1
|
Riggle JP, Kay LM, Onishi KG, Falk DT, Smarr BL, Zucker I, Prendergast BJ. Modified Wavelet Analyses Permit Quantification of Dynamic Interactions Between Ultradian and Circadian Rhythms. J Biol Rhythms 2022; 37:631-654. [PMID: 36380564 PMCID: PMC11024927 DOI: 10.1177/07487304221128652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Circadian rhythms provide daily temporal structure to cellular and organismal biological processes, ranging from gene expression to cognition. Higher-frequency (intradaily) ultradian rhythms are similarly ubiquitous but have garnered far less empirical study, in part because of the properties that define them-multimodal periods, non-stationarity, circadian harmonics, and diurnal modulation-pose challenges to their accurate and precise quantification. Wavelet analyses are ideally suited to address these challenges, but wavelet-based measurement of ultradian rhythms has remained largely idiographic. Here, we describe novel analytical approaches, based on discrete and continuous wavelet transforms, which permit quantification of rhythmic power distribution across a broad ultradian spectrum, as well as precise identification of period within empirically determined ultradian bands. Moreover, the aggregation of normalized wavelet matrices allows group-level analyses of experimental treatments, thereby circumventing limitations of idiographic approaches. The accuracy and precision of these wavelet analyses were validated using in silico and in vivo models with known ultradian features. Experiments in male and female mice yielded robust and repeatable measures of ultradian period and power in home cage locomotor activity, confirming and extending reports of ultradian rhythm modulation by sex, gonadal hormones, and circadian entrainment. Seasonal changes in day length modulated ultradian period and power, and exerted opposite effects in the light and dark phases of the 24 h day, underscoring the importance of evaluating ultradian rhythms with attention to circadian phase. Sex differences in ultradian rhythms were more prominent at night and depended on gonadal hormones in male mice. Thus, relatively straightforward modifications to the wavelet procedure allowed quantification of ultradian rhythms with appropriate time-frequency resolution, generating accurate, and repeatable measures of period and power which are suitable for group-level analyses. These analytical tools may afford deeper understanding of how ultradian rhythms are generated and respond to interoceptive and exteroceptive cues.
Collapse
Affiliation(s)
- Jonathan P. Riggle
- Department of Psychology and Institute for Mind and Biology, The University of Chicago, Chicago, Illinois
- Department of Physiology, University of California, San Francisco, San Francisco, California
| | - Leslie M. Kay
- Department of Psychology and Institute for Mind and Biology, The University of Chicago, Chicago, Illinois
- Committee on Neurobiology, The University of Chicago, Chicago, Illinois
- Committee on Computational Neuroscience, The University of Chicago, Chicago, Illinois
| | - Kenneth G. Onishi
- Department of Psychology and Institute for Mind and Biology, The University of Chicago, Chicago, Illinois
| | - David T. Falk
- Department of Psychology and Institute for Mind and Biology, The University of Chicago, Chicago, Illinois
| | - Benjamin L. Smarr
- Department of Bioengineering and the Halicioğlu Data Science Institute, University of California, San Diego, La Jolla, California
| | - Irving Zucker
- Department of Psychology, University of California, Berkeley, Berkeley, California
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California
| | - Brian J. Prendergast
- Department of Psychology and Institute for Mind and Biology, The University of Chicago, Chicago, Illinois
- Committee on Neurobiology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Rojas-Castañeda JC, Vigueras-Villaseñor RM, Chávez-Saldaña M, Rojas P, Gutiérrez-Pérez O, Rojas C, Arteaga-Silva M. Neonatal exposure to monosodium glutamate induces morphological alterations in suprachiasmatic nucleus of adult rat. Int J Exp Pathol 2016; 97:18-26. [PMID: 26799547 PMCID: PMC4840248 DOI: 10.1111/iep.12157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 10/07/2015] [Indexed: 01/19/2023] Open
Abstract
Neonatal exposure to monosodium glutamate (MSG) induces circadian disorders in several physiological and behavioural processes regulated by the suprachiasmatic nucleus (SCN). The objective of this study was to evaluate the effects of neonatal exposure to MSG on locomotor activity, and on morphology, cellular density and expression of proteins, as evaluated by optical density (OD), of vasopressin (VP)-, vasoactive intestinal polypeptide (VIP)- and glial fibrillary acidic protein (GFAP)-immunoreactive cells in the SCN. Male Wistar rats were used: the MSG group was subcutaneously treated from 3 to 10 days of age with 3.5 mg/g/day. Locomotor activity was evaluated at 90 days of age using 'open-field' test, and the brains were processed for immunohistochemical studies. MSG exposure induced a significant decrease in locomotor activity. VP- and VIP-immunoreactive neuronal densities showed a significant decrease, while the somatic OD showed an increase. Major axes and somatic area were significantly increased in VIP neurons. The cellular and optical densities of GFAP-immunoreactive sections of SCN were significantly increased. These results demonstrated that newborn exposure to MSG induced morphological alterations in SCN cells, an alteration that could be the basis for behavioural disorders observed in the animals.
Collapse
Affiliation(s)
| | - Rosa María Vigueras-Villaseñor
- Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, México D.F., México
- Departamento de Morfología, Facultad de Medicina Veterinaria y Zootécnia, UNAM, México D.F., México
| | | | - Patricia Rojas
- Laboratorio de Neurotoxicología, Instituto Nacional de Neurología y Neurocirugía, 'Manuel Velasco Suárez', México D.F., México
| | - Oscar Gutiérrez-Pérez
- Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, México D.F., México
- Departamento de Morfología, Facultad de Medicina Veterinaria y Zootécnia, UNAM, México D.F., México
| | - Carolina Rojas
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, México D.F., México
| | | |
Collapse
|