1
|
Tauroursodeoxycholic Acid Reduces Neuroinflammation but Does Not Support Long Term Functional Recovery of Rats with Spinal Cord Injury. Biomedicines 2022; 10:biomedicines10071501. [PMID: 35884805 PMCID: PMC9313003 DOI: 10.3390/biomedicines10071501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
The bile acid tauroursodeoxycholic acid (TUDCA) reduces cell death under oxidative stress and inflammation. Implants of bone marrow-derived stromal cells (bmSC) are currently under investigation in clinical trials of spinal cord injury (SCI). Since cell death of injected bmSC limits the efficacy of this treatment, the cytoprotective effect of TUDCA may enhance its benefit. We therefore studied the therapeutic effect of TUDCA and its use as a combinatorial treatment with human bmSC in a rat model of SCI. A spinal cord contusion injury was induced at thoracic level T9. Treatment consisted of i.p. injections of TUDCA alone or in combination with one injection of human bmSC into the cisterna magna. The recovery of motor functions was assessed during a surveillance period of six weeks. Biochemical and histological analysis of spinal cord tissue confirmed the anti-inflammatory activity of TUDCA. Treatment improved the recovery of autonomic bladder control and had a positive effect on motor functions in the subacute phase, however, benefits were only transient, such that no significant differences between vehicle and TUDCA-treated animals were observed 1–6 weeks after the lesion. Combinatorial treatment with TUDCA and bmSC failed to have an additional effect compared to treatment with bmSC only. Our data do not support the use of TUDCA as a treatment of SCI.
Collapse
|
2
|
PPARα agonist relieves spinal cord injury in rats by activating Nrf2/HO-1 via the Raf-1/MEK/ERK pathway. Aging (Albany NY) 2021; 13:24640-24654. [PMID: 34799468 PMCID: PMC8660597 DOI: 10.18632/aging.203699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022]
Abstract
Objective: To observe the inhibitory effects of the peroxisome proliferator-activated receptor alpha (PPARα) agonist palmitoylethanolamide (PEA) on inflammatory responses and oxidative stress injury in rats with spinal cord injury (SCI). Methods: The SCI rat model was established using modified Allen's method and the changes in rats’ joint motion were observed by Basso, Beattie and Bresnahan locomotor rating scale (BBB scale) at 1, 3 and 7 days after modeling, HE Staining and Nissl Staining has been carried out to evaluate the pathological lesion of spinal cords in rats. Besides, Immunohistochemical (IHC) was performed to detect the reactive oxygen species (ROS), expression levels of acrylamide (ACR) and manganese superoxide dismutase (MnSOD) in rat spinal cords, and Western Blotting was applied to measure protein expression levels of nuclear factor-kappa B (NF-κB), B cell lymphoma-2 (Bcl-2), BCL-2 associated X (BAX), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), phosphorylated (p)-Akt, HO-1, Nrf2, trithorax-1 (TRX-1), Raf-1, MEK, ERK, p-MEK and p-ERK. Results: The PPARα agonist PEA could alleviate SCI in rats, inhibit inflammatory responses, mitigate oxidative stress injury, reduce the apoptotic rate and promote SCI rats motor function recovery. In addition, the PPARα agonist PEA was able to activate the phosphorylation of MEK and ERK, stimulate Nrf-2 translocation into the nucleus and up-regulate the expressions of HO-1 and TRX-1. Conclusion: PPARα agonist PEA can relieve SCI in rats by inhibiting inflammatory responses and oxidative stress, which may involve a mechanism associated with the activation of Nrf2/HO-1 via the Raf-1/MEK/ERK pathway.
Collapse
|
3
|
Fatty acid suppression of glial activation prevents central neuropathic pain after spinal cord injury. Pain 2020; 160:2724-2742. [PMID: 31365471 DOI: 10.1097/j.pain.0000000000001670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
About half of patients with spinal cord injury (SCI) develop debilitating central neuropathic pain (CNP), with no effective treatments. Thus, effective, safe, and novel therapies are needed urgently. Previously, docosahexaenoic acid (DHA) was reported to confer neuroprotection in preclinical SCI models. However, its therapeutic potential on SCI-CNP remains to be elucidated. Here, we demonstrated for the first time that intravenous DHA administrations with 3-day intervals (250 nmol/kg; starting 30 minutes after injury and maintained for 6 weeks) effectively prevented SCI-CNP development in a clinically relevant rat contusion model. SCI-CNP was assessed by a novel sensory profiling approach combining evoked pain measures and pain-related ethologically relevant rodent behaviours (burrowing, thigmotaxis, and place/escape avoidance) to mimic those for measuring human (sensory, affective, cognitive, and spontaneous) pain. Strikingly, already established SCI-CNP could be abolished partially by similar DHA administrations, starting from the beginning of week 4 after injury and maintained for 4 weeks. At spinal (epicenter and L5 dorsal horns) and supraspinal (anterior cingulate cortex) levels, both treatment regimens potently suppressed microglial and astrocyte activation, which underpins SCI-CNP pathogenesis. Spinal microgliosis, a known hallmark associated with neuropathic pain behaviours, was reduced by DHA treatments. Finally, we revealed novel potential roles of peroxisome proliferator-activated and retinoid X receptors and docosahexaenoyl ethanolamide (DHA's metabolite) in mediating DHA's effects on microglial activation. Our findings, coupled with the excellent long-term clinical safety of DHA even in surgical and critically ill patients, suggest that systemic DHA treatment is a translatable, effective, safe, and novel approach for preventing and managing SCI-CNP.
Collapse
|
4
|
Michailidou I, Jongejan A, Vreijling JP, Georgakopoulou T, de Wissel MB, Wolterman RA, Ruizendaal P, Klar-Mohamad N, Grootemaat AE, Picavet DI, Kumar V, van Kooten C, Woodruff TM, Morgan BP, van der Wel NN, Ramaglia V, Fluiter K, Baas F. Systemic inhibition of the membrane attack complex impedes neuroinflammation in chronic relapsing experimental autoimmune encephalomyelitis. Acta Neuropathol Commun 2018; 6:36. [PMID: 29724241 PMCID: PMC5932802 DOI: 10.1186/s40478-018-0536-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
The complement system is a key driver of neuroinflammation. Activation of complement by all pathways, results in the formation of the anaphylatoxin C5a and the membrane attack complex (MAC). Both initiate pro-inflammatory responses which can contribute to neurological disease. In this study, we delineate the specific roles of C5a receptor signaling and MAC formation during the progression of experimental autoimmune encephalomyelitis (EAE)-mediated neuroinflammation. MAC inhibition was achieved by subcutaneous administration of an antisense oligonucleotide specifically targeting murine C6 mRNA (5 mg/kg). The C5a receptor 1 (C5aR1) was inhibited with the C5a receptor antagonist PMX205 (1.5 mg/kg). Both treatments were administered systemically and started after disease onset, at the symptomatic phase when lymphocytes are activated. We found that antisense-mediated knockdown of C6 expression outside the central nervous system prevented relapse of disease by impeding the activation of parenchymal neuroinflammatory responses, including the Nod-like receptor protein 3 (NLRP3) inflammasome. Furthermore, C6 antisense-mediated MAC inhibition protected from relapse-induced axonal and synaptic damage. In contrast, inhibition of C5aR1-mediated inflammation diminished expression of major pro-inflammatory mediators, but unlike C6 inhibition, it did not stop progression of neurological disability completely. Our study suggests that MAC is a key driver of neuroinflammation in this model, thereby MAC inhibition might be a relevant treatment for chronic neuroinflammatory diseases.
Collapse
|
5
|
Avila-Martin G, Mata-Roig M, Galán-Arriero I, Taylor JS, Busquets X, Escribá PV. Treatment with albumin-hydroxyoleic acid complex restores sensorimotor function in rats with spinal cord injury: Efficacy and gene expression regulation. PLoS One 2017; 12:e0189151. [PMID: 29244816 PMCID: PMC5731767 DOI: 10.1371/journal.pone.0189151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Sensorimotor dysfunction following incomplete spinal cord injury (SCI) is often characterized by paralysis, spasticity and pain. Previously, we showed that intrathecal (i.t.) administration of the albumin-oleic acid (A-OA) complex in rats with SCI produced partial improvement of these symptoms and that oral 2-hydroxyoleic acid (HOA, a non-hydrolyzable OA analogue), was efficacious in the modulation and treatment of nociception and pain-related anxiety, respectively. Here we observed that intrathecal treatment with the complex albumin-HOA (A-HOA) every 3 days following T9 spinal contusion injury improved locomotor function assessed with the Rotarod and inhibited TA noxious reflex activity in Wistar rats. To investigate the mechanism of action of A-HOA, microarray analysis was carried out in the spinal cord lesion area. Representative genes involved in pain and neuroregeneration were selected to validate the changes observed in the microarray analysis by quantitative real-time RT-PCR. Comparison of the expression between healthy rats, SCI rats, and SCI treated with A-HOA rats revealed relevant changes in the expression of genes associated with neuronal morphogenesis and growth, neuronal survival, pain and inflammation. Thus, treatment with A-HOA not only induced a significant overexpression of growth and differentiation factor 10 (GDF10), tenascin C (TNC), aspirin (ASPN) and sushi-repeat-containing X-linked 2 (SRPX2), but also a significant reduction in the expression of prostaglandin E synthase (PTGES) and phospholipases A1 and A2 (PLA1/2). Currently, SCI has very important unmet clinical needs. A-HOA downregulated genes involved with inflammation and upregulated genes involved in neuronal growth, and may serve to promote recovery of function after experimental SCI.
Collapse
Affiliation(s)
| | - Manuel Mata-Roig
- Department of Pathology, University of Valencia, Valencia, Spain
| | | | - Julian S. Taylor
- Hospital Nacional de Parapléjicos, Toledo, Spain
- Stoke Mandeville Spinal Research, National Spinal Injuries Centre, Buckinghamshire Healthcare Trust, NHS, Aylesbury, United Kingdom
- Harris Manchester College, University of Oxford, Oxford, United Kingdom
| | - Xavier Busquets
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Pablo V. Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, Spain
| |
Collapse
|
6
|
Galán-Arriero I, Serrano-Muñoz D, Gómez-Soriano J, Goicoechea C, Taylor J, Velasco A, Ávila-Martín G. The role of Omega-3 and Omega-9 fatty acids for the treatment of neuropathic pain after neurotrauma. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1629-1635. [PMID: 28495596 DOI: 10.1016/j.bbamem.2017.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs), such as docosaexaenoic acid (DHA) and eicosapentaenoic acid (EPA), mediate neuroactive effects in experimental models of traumatic peripheral nerve and spinal cord injury. Cellular mechanisms of PUFAs include reduced neuroinflammation and oxidative stress, enhanced neurotrophic support, and activation of cell survival pathways. Bioactive Omega-9 monounsaturated fatty acids, such as oleic acid (OA) and 2-hydroxy oleic acid (2-OHOA), also show therapeutic effects in neurotrauma models. These FAs reduces noxious hyperreflexia and pain-related anxiety behavior following peripheral nerve injury and improves sensorimotor function following spinal cord injury (SCI), including facilitation of descending inhibitory antinociception. The relative safe profile of neuroactive fatty acids (FAs) holds promise for the future clinical development of these molecules as analgesic agents. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Iriana Galán-Arriero
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain.
| | - Diego Serrano-Muñoz
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain.
| | - Julio Gómez-Soriano
- GIFTO, Nursing and Physiotherapy Faculty, Universidad de Castilla la Mancha, 45072 Toledo, Spain.
| | - Carlos Goicoechea
- Pharmacology and Nutrition Department, Health Sciences Faculty, Universidad Rey Juan Carlos, 28922 Alcorcón, Madrid, Spain.
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; Stoke Mandeville Spinal Research, National Spinal Injuries Centre, Buckinghamshire Healthcare NHS Trust, HP21 8AL Aylesbury, UK; Harris Manchester College, OX1 3TD University of Oxford, UK.
| | - Ana Velasco
- Instituto de Neurociencias de Castilla y León, 37007 Salamanca, Spain.
| | - Gerardo Ávila-Martín
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain.
| |
Collapse
|
7
|
Iglesias J, Morales L, Barreto GE. Metabolic and Inflammatory Adaptation of Reactive Astrocytes: Role of PPARs. Mol Neurobiol 2016; 54:2518-2538. [PMID: 26984740 DOI: 10.1007/s12035-016-9833-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/04/2016] [Indexed: 01/10/2023]
Abstract
Astrocyte-mediated inflammation is associated with degenerative pathologies such as Alzheimer's and Parkinson's diseases and multiple sclerosis. The acute inflammation and morphological and metabolic changes that astrocytes develop after the insult are known as reactive astroglia or astrogliosis that is an important response to protect and repair the lesion. Astrocytes optimize their metabolism to produce lactate, glutamate, and ketone bodies in order to provide energy to the neurons that are deprived of nutrients upon insult. Firstly, we review the basis of inflammation and morphological changes of the different cell population implicated in reactive gliosis. Next, we discuss the more active metabolic pathways in healthy astrocytes and explain the metabolic response of astrocytes to the insult in different pathologies and which metabolic alterations generate complications in these diseases. We emphasize the role of peroxisome proliferator-activated receptors isotypes in the inflammatory and metabolic adaptation of astrogliosis developed in ischemia or neurodegenerative diseases. Based on results reported in astrocytes and other cells, we resume and hypothesize the effect of peroxisome proliferator-activated receptor (PPAR) activation with ligands on different metabolic pathways in order to supply energy to the neurons. The activation of selective PPAR isotype activity may serve as an input to better understand the role played by these receptors on the metabolic and inflammatory compensation of astrogliosis and might represent an opportunity to develop new therapeutic strategies against traumatic brain injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- José Iglesias
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| | - Ludis Morales
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
- Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
8
|
Pérez-Martín M, Rivera P, Blanco E, Lorefice C, Decara J, Pavón FJ, Serrano A, Rodríguez de Fonseca F, Suárez J. Environmental Enrichment, Age, and PPARα Interact to Regulate Proliferation in Neurogenic Niches. Front Neurosci 2016; 10:89. [PMID: 27013951 PMCID: PMC4783391 DOI: 10.3389/fnins.2016.00089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) ligands have been shown to modulate recovery after brain insults such as ischemia and irradiation by enhancing neurogenesis. In the present study, we investigated the effect of the genetic deletion of PPARα receptors on the proliferative rate of neural precursor cells (NPC) in the adult brain. The study was performed in aged Pparα−/− mice exposed to nutritional (treats) and environmental (games) enrichments for 20 days. We performed immunohistochemical analyses of cells containing the replicating cell DNA marker 5-bromo-2′-deoxyuridine (BrdU+) and the immature neuronal marker doublecortin (Dcx+) in the main neurogenic zones of the adult brain: subgranular zone of dentate gyrus (SGZ), subventricular zone of lateral ventricles (SVZ), and/or hypothalamus. Results indicated a reduction in the number of BrdU+ cells in the neurogenic zones analyzed as well as Dcx+ cells in the SGZ during aging (2, 6, and 18 months). Pparα deficiency alleviated the age-related reduction of NPC proliferation (BrdU+ cells) in the SVZ of the 18-months-old mice. While no genotype effect on NPC proliferation was detected in the SGZ during aging, an accentuated reduction in the number of Dcx+ cells was observed in the SGZ of the 6-months-old Pparα−/− mice. Exposing the 18-months-old mice to nutritional and environmental enrichments reversed the Pparα−/−-induced impairment of NPC proliferation in the neurogenic zones analyzed. The enriched environment did not modify the number of SGZ Dcx+ cells in the 18 months old Pparα−/− mice. These results identify PPARα receptors as a potential target to counteract the naturally observed decline in adult NPC proliferation associated with aging and impoverished environments.
Collapse
Affiliation(s)
- Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga Málaga, Spain
| | - Patricia Rivera
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Eduardo Blanco
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de MálagaMálaga, Spain; Departament de Pedagogia i Psicologia, Facultat d'Educació, Psicologia i Treball Social, Universitat de LleidaLleida, Spain
| | - Clara Lorefice
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga, Universidad de MálagaMálaga, Spain; UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de MálagaMálaga, Spain
| | - Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Francisco J Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| |
Collapse
|
9
|
Bao X, Cai Y, Wang Y, Zhao J, He X, Yu D, Huang J, Jing S, Du Z, Yang T, Warner M, Gustafsson JA, Fan X. Liver X Receptor β Is Involved in Formalin-Induced Spontaneous Pain. Mol Neurobiol 2016; 54:1467-1481. [PMID: 26846362 DOI: 10.1007/s12035-016-9737-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/20/2016] [Indexed: 12/30/2022]
Abstract
Increasing evidence indicates that the liver X receptor(LXR) β modulates inflammatory pain. However, the molecular mechanisms through which LXRβ modulates pain are unclear. Here, we found that LXRβ-null mice responded more strongly to acute noxious stimuli than wild-type (WT) littermates (in the hot plate and Hargreaves tests) and had augmented tonic inflammatory pain (in the formalin test). This increased reactivity to inflammatory pain was accompanied by enhanced formalin-evoked Fos and pERK staining of second-order nociceptive neurons. Immunohistochemistry showed that the expression of CGRP, SP, and IB4 was increased in the lamina I-II of the lumbar dorsal horns in formalin-injected LXRβ knockout (KO) mice compared with the WT controls. In addition, LXRβ deletion in the mice enhanced the formalin-induced inflammation with more activated microglia and astrocytes in the spinal cord. Furthermore, the levels of pro-inflammatory cytokines (IL-1β ,TNF-α) as well as NFκB in the formalin-injected paw were elevated by the loss of LXRβ. Taken together, these data indicate that LXRβ is involved in acute as well as inflammatory pain, and thus, it may be considered as a new target for the development of analgesics.
Collapse
Affiliation(s)
- Xiaohang Bao
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.,Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Yulong Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Ying Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Jinghui Zhao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Xie He
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Dan Yu
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Jing Huang
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Sheng Jing
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Zhiyong Du
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Tiande Yang
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.
| | - Margaret Warner
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, 77054, USA
| | - Jan-Ake Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, 77054, USA. .,Department of Biosciences and Nutrition, Karolinska Institute, Novum, Novum, 141 86, Sweden.
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
10
|
Garcia-Ovejero D, Arevalo-Martin A, Paniagua-Torija B, Florensa-Vila J, Ferrer I, Grassner L, Molina-Holgado E. The ependymal region of the adult human spinal cord differs from other species and shows ependymoma-like features. Brain 2015; 138:1583-97. [PMID: 25882650 DOI: 10.1093/brain/awv089] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/30/2015] [Indexed: 12/20/2022] Open
Abstract
Several laboratories have described the existence of undifferentiated precursor cells that may act like stem cells in the ependyma of the rodent spinal cord. However, there are reports showing that this region is occluded and disassembled in humans after the second decade of life, although this has been largely ignored or interpreted as a post-mortem artefact. To gain insight into the patency, actual structure, and molecular properties of the adult human spinal cord ependymal region, we followed three approaches: (i) with MRI, we estimated the central canal patency in 59 control subjects, 99 patients with traumatic spinal cord injury, and 26 patients with non-traumatic spinal cord injuries. We observed that the central canal is absent from the vast majority of individuals beyond the age of 18 years, gender-independently, throughout the entire length of the spinal cord, both in healthy controls and after injury; (ii) with histology and immunohistochemistry, we describe morphological properties of the non-lesioned ependymal region, which showed the presence of perivascular pseudorosettes, a common feature of ependymoma; and (iii) with laser capture microdissection, followed by TaqMan® low density arrays, we studied the gene expression profile of the ependymal region and found that it is mainly enriched in genes compatible with a low grade or quiescent ependymoma (53 genes); this region is enriched only in 14 genes related to neurogenic niches. In summary, we demonstrate here that the central canal is mainly absent in the adult human spinal cord and is replaced by a structure morphologically and molecularly different from that described for rodents and other primates. The presented data suggest that the ependymal region is more likely to be reminiscent of a low-grade ependymoma. Therefore, a direct translation to adult human patients of an eventual therapeutic potential of this region based on animal models should be approached with caution.
Collapse
Affiliation(s)
- Daniel Garcia-Ovejero
- 1 Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Angel Arevalo-Martin
- 1 Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Beatriz Paniagua-Torija
- 1 Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - José Florensa-Vila
- 2 Radiology Unit, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Isidro Ferrer
- 3 Institut de Neuropatologia, Servei d'Anatomia Patolo`gica, IDIBELL-Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
| | - Lukas Grassner
- 4 Center for Spinal Cord Injuries, Trauma Center Murnau, Germany 5 Institute of Molecular Regenerative Medicine, SCI-TReCS (Spinal Cord Injury and Tissue Regeneration Center Salzburg), Paracelsus Medical University, Salzburg, Austria
| | - Eduardo Molina-Holgado
- 1 Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| |
Collapse
|
11
|
Sengupta MB, Basu M, Iswarari S, Mukhopadhyay KK, Sardar KP, Acharyya B, Mohanty PK, Mukhopadhyay D. CSF proteomics of secondary phase spinal cord injury in human subjects: perturbed molecular pathways post injury. PLoS One 2014; 9:e110885. [PMID: 25350754 PMCID: PMC4211693 DOI: 10.1371/journal.pone.0110885] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/17/2014] [Indexed: 12/29/2022] Open
Abstract
Recovery of sensory and motor functions following traumatic spinal cord injury (SCI) is dependent on injury severity. Here we identified 49 proteins from cerebrospinal fluid (CSF) of SCI patients, eight of which were differentially abundant among two severity groups of SCI. It was observed that the abundance profiles of these proteins change over a time period of days to months post SCI. Statistical analysis revealed that these proteins take part in several molecular pathways including DNA repair, protein phosphorylation, tRNA transcription, iron transport, mRNA metabolism, immune response and lipid and ATP catabolism. These pathways reflect a set of mechanisms that the system may adopt to cope up with the assault depending on the injury severity, thus leading to observed physiological responses. Apart from putting forward a picture of the molecular scenario at the injury site in a human study, this finding further delineates consequent pathways and molecules that may be altered by external intervention to restrict neural degeneration.
Collapse
Affiliation(s)
- Mohor Biplab Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Mahashweta Basu
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Sourav Iswarari
- Department of Physical Medicine & Rehabilitation, Nil Ratan Sircar Medical College & Hospital, Kolkata, West Bengal, India
| | - Kiran Kumar Mukhopadhyay
- Department of Orthopaedic Surgery, Nil Ratan Sircar Medical College & Hospital, Kolkata, West Bengal, India
| | - Krishna Pada Sardar
- Department of Orthopaedic Surgery, Nil Ratan Sircar Medical College & Hospital, Kolkata, West Bengal, India
| | - Biplab Acharyya
- Department of Orthopaedic Surgery, Nil Ratan Sircar Medical College & Hospital, Kolkata, West Bengal, India
| | - Pradeep K. Mohanty
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
12
|
Avila-Martin G, Galan-Arriero I, Ferrer-Donato A, Busquets X, Gomez-Soriano J, Escribá PV, Taylor J. Oral 2-hydroxyoleic acid inhibits reflex hypersensitivity and open-field-induced anxiety after spared nerve injury. Eur J Pain 2014; 19:111-22. [PMID: 24824524 DOI: 10.1002/ejp.528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recently, fatty acids have been shown to modulate sensory function in animal models of neuropathic pain. In this study, the antinociceptive effect of 2-hydroxyoleic acid (2-OHOA) was assessed following spared nerve injury (SNI) with reflex and cerebrally mediated behavioural responses. METHODS Initial antinociceptive behavioural screening of daily administration of 2-OHOA (400 mg/kg, p.o.) was assessed in Wistar rats by measuring hindlimb reflex hypersensitivity to von Frey and thermal plate stimulation up to 7 days after SNI, while its modulatory effect on lumbar spinal dorsal horn microglia reactivity was assessed with OX-42 immunohistochemistry. In vitro the effect of 2-OHOA (120 μM) on cyclooxygenase protein expression (COX-2/COX-1 ratio) in lipopolysaccharide-activated macrophage cells was tested with Western blot analysis. Finally, the effects of 2-OHOA treatment on the place escape aversion paradigm (PEAP) and the open-field-induced anxiety test were tested at 21 days following nerve injury compared with vehicle-treated sham and pregabalin-SNI (30 mg/kg, p.o.) control groups. RESULTS Oral 2-OHOA significantly reduced ipsilateral mechanical and thermal hypersensitivity up to 7 days after SNI. Additionally 2-OHOA decreased the COX-2/COX-1 ratio in lipopolysaccharide-activated macrophage cells and OX-42 expression within the ipsilateral lumbar spinal dorsal horn 7 days after SNI. 2-OHOA significantly restored inner-zone exploration in the open-field test compared with the vehicle-treated sham group at 21 days after SNI. CONCLUSIONS Oral administration of the modified omega 9 fatty acid, 2-OHOA, mediates antinociception and prevents open-field-induced anxiety in the SNI model in Wistar rats, which is mediated by an inhibition of spinal dorsal horn microglia activation.
Collapse
Affiliation(s)
- G Avila-Martin
- Sensorimotor Function Group, SESCAM, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | | | | | | | | | | | |
Collapse
|