1
|
Lei J, Tang LL, You HJ. Pathological pain: Non-motor manifestations in Parkinson disease and its treatment. Neurosci Biobehav Rev 2024; 161:105646. [PMID: 38569983 DOI: 10.1016/j.neubiorev.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
In addition to motor symptoms, non-motor manifestations of Parkinson's disease (PD), i.e. pain, depression, sleep disturbance, and autonomic disorders, have received increasing attention. As one of the non-motor symptoms, pain has a high prevalence and is considered an early pre-motor symptom in the development of PD. In relation to pathological pain and its management in PD, particularly in the early stages, it is hypothesized that the loss of dopaminergic neurons causes a functional deficit in supraspinal structures, leading to an imbalance in endogenous descending modulation. Deficits in dopaminergic-dependent pathways also affect non-dopaminergic neurotransmitter systems that contribute to the pathological processing of nociceptive input, the integration, and modulation of pain in PD. This review examines the onset and progression of pain in PD, with a particular focus on alterations in the central modulation of nociception. The discussion highlights the importance of abnormal endogenous descending facilitation and inhibition in PD pain, which may provide potential clues to a better understanding of the nature of pathological pain and its effective clinical management.
Collapse
Affiliation(s)
- Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China
| | - Lin-Lin Tang
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China.
| |
Collapse
|
2
|
You HJ, Lei J, Pertovaara A. Thalamus: The 'promoter' of endogenous modulation of pain and potential therapeutic target in pathological pain. Neurosci Biobehav Rev 2022; 139:104745. [PMID: 35716873 DOI: 10.1016/j.neubiorev.2022.104745] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022]
Abstract
More recently, the thalamic mediodorsal (MD) and ventromedial (VM) nuclei have been revealed to be functioned as 'nociceptive discriminator' in discriminating noxious and innocuous peripheral afferents, and exhibits distinct different descending controls of nociception. Of particularly importance, the function of thalamic nuclei in engaging descending modulation of nociception is 'silent' or inactive during the physiological state as well as in condition exposed to insufficient noxious stimulation. Once initiation by sufficient noxious or innocuous C-afferents associated with temporal and spatial summation, the thalamic MD and VM nuclei exhibit salient, different effects: facilitation and inhibition, on noxious mechanically and heat evoked nociception, respectively. Based on series of experimental evidence, we here summarize a novel hypothesis involving thalamic MD and VM nuclei functioned as 'promoter' in initiating descending facilitation and inhibition of pain with specific spatiotemporal characteristics. We further hypothesize that clinical remedy in targeting thalamic VM nucleus by enhancing its activities in recruiting inhibition alone or decreasing thalamic MD nucleus induced facilitation may provide promising way in effectively control of pathological pain.
Collapse
Affiliation(s)
- Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China.
| | - Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, POB 63, Helsinki 00014, Finland
| |
Collapse
|
3
|
Lei J, Ye G, Pertovaara A, You HJ. Effects of Heating-needle Stimulation in Restoration of Weakened Descending Inhibition of Nociception in a Rat Model of Parkinson's Disease. Neuroscience 2020; 440:249-266. [PMID: 32504795 DOI: 10.1016/j.neuroscience.2020.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/25/2020] [Indexed: 01/29/2023]
Abstract
Here we investigated variations of endogenous descending modulation of nociception and therapeutic effects of intramuscular (i.m.) heating-needle stimulation in early stage of Parkinson's disease (PD) induced by unilateral microinjection of 3.5 μl of 2.5 μg/μl 6-hydroxydopamine into the rat striatum. Paw withdrawal reflexes to noxious mechanical and heat stimuli in PD rats with and without exposure to i.m. 5.8% saline induced muscle nociception were evaluated. Experimental PD had no influence on mechanical or heat sensitivity in the baseline condition, whereas descending facilitation was stronger and descending inhibition was weaker in PD rats than vehicle-treated or naive rats during muscle nociception (P < 0.05). Striatal administration of 5 μg of dopamine failed to reverse the PD-associated changes in descending facilitation or inhibition, whereas dopamine in the thalamic mediodorsal (MD) nucleus and ventromedial (VM) nucleus significantly decreased the increase in descending facilitation and reversed the attenuation in descending inhibition, respectively (P < 0.05). I.m. 43 °C of heating-needle stimulation had no effects on the enhanced descending facilitation in PD rats, but it markedly increased descending inhibition and reversed the increase in the number of apomorphine-induced body rotations (P < 0.05), which effects were dose-dependently attenuated by raclopride, a dopamine 2 receptor antagonist, in the thalamic VM nucleus (P < 0.05). The results indicate that the early-stage PD is associated with enhanced descending facilitation and weakened descending inhibition. From clinical perspective, 43 °C heat therapeutic regime promises to selectively enhance descending inhibition that is accompanied by improvement of motor dysfunction in PD.
Collapse
Affiliation(s)
- Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Department of Physiology, Faculty of Medicine, University of Helsinki, POB 63, Helsinki 00014, Finland
| | - Gang Ye
- Department of Rehabilitation, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, POB 63, Helsinki 00014, Finland
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China.
| |
Collapse
|
4
|
Sikandar S, West SJ, McMahon SB, Bennett DL, Dickenson AH. Sensory processing of deep tissue nociception in the rat spinal cord and thalamic ventrobasal complex. Physiol Rep 2017; 5:e13323. [PMID: 28720713 PMCID: PMC5532477 DOI: 10.14814/phy2.13323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 11/24/2022] Open
Abstract
Sensory processing of deep somatic tissue constitutes an important component of the nociceptive system, yet associated central processing pathways remain poorly understood. Here, we provide a novel electrophysiological characterization and immunohistochemical analysis of neural activation in the lateral spinal nucleus (LSN). These neurons show evoked activity to deep, but not cutaneous, stimulation. The evoked responses of neurons in the LSN can be sensitized to somatosensory stimulation following intramuscular hypertonic saline, an acute model of muscle pain, suggesting this is an important spinal relay site for the processing of deep tissue nociceptive inputs. Neurons of the thalamic ventrobasal complex (VBC) mediate both cutaneous and deep tissue sensory processing, but in contrast to the lateral spinal nucleus our electrophysiological studies do not suggest the existence of a subgroup of cells that selectively process deep tissue inputs. The sensitization of polymodal and thermospecific VBC neurons to mechanical somatosensory stimulation following acute muscle stimulation with hypertonic saline suggests differential roles of thalamic subpopulations in mediating cutaneous and deep tissue nociception in pathological states. Overall, our studies at both the spinal (lateral spinal nucleus) and supraspinal (thalamic ventrobasal complex) levels suggest a convergence of cutaneous and deep somatosensory inputs onto spinothalamic pathways, which are unmasked by activation of muscle nociceptive afferents to produce consequent phenotypic alterations in spinal and thalamic neural coding of somatosensory stimulation. A better understanding of the sensory pathways involved in deep tissue nociception, as well as the degree of labeled line and convergent pathways for cutaneous and deep somatosensory inputs, is fundamental to developing targeted analgesic therapies for deep pain syndromes.
Collapse
Affiliation(s)
- Shafaq Sikandar
- Wolfson Institute of Biomedical Research, University College London, London, United Kingdom
| | - Steven J West
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stephen B McMahon
- Neurorestoration Group, Wolfson Wing Hodgkin Building, King's College London, London, United Kingdom
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Anthony H Dickenson
- Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Xiao Y, Lei J, Ye G, Xu H, You HJ. Role of thalamic nuclei in the modulation of Fos expression within the cerebral cortex during hypertonic saline-induced muscle nociception. Neuroscience 2015; 304:36-46. [PMID: 26189794 DOI: 10.1016/j.neuroscience.2015.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/02/2015] [Accepted: 07/09/2015] [Indexed: 11/16/2022]
Abstract
It has been proposed that thalamic mediodorsal (MD) and ventromedial (VM) nuclei form thalamic 'nociceptive discriminators' in discrimination of nociceptive afferents, and specifically govern endogenous descending facilitation and inhibition. The present study conducted in rats was to explore the role of thalamic MD and VM nuclei in modulation of cerebral neuronal activities by means of detection of spatiotemporal variations of Fos expression within the cerebral cortex. Following a unilateral intramuscular injection of 5.8% saline into the gastrocnemius muscle, Fos expression within the bilateral, different areas of the cerebral cortex except S2 was significantly increased (P<0.05). Particularly, the increases in Fos expression within the cingulate cortex and the insular cortex occurred at 0.5h, 4h and reached the peak level at 4h, 16h, respectively. Electrolytic lesion of the contralateral thalamic MD and VM nuclei significantly blocked the 5.8% saline intramuscularly induced increases in Fos expression within the bilateral cingulate and insular cortices, respectively. Additionally, the 5.8% saline-induced Fos expression in the cingulate cortex and the insular cortex were dose-dependently attenuated by microinjection of μ-opioid antagonist β-funaltrexamine hydrochloride into the thalamic MD and VM nuclei. It is suggested that (1) the neural circuits of 'thalamic MD nucleus - cingulate cortex' and 'thalamic VM nucleus - insular cortex' form two distinct pathways in the endogenous control of nociception, (2) mirror or contralateral pain is hypothesized to be related to cross-talk of neuronal activities within the bilateral cerebral cortices modulated by μ-opioid receptors within the thalamic MD and VM nuclei.
Collapse
Affiliation(s)
- Y Xiao
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - J Lei
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - G Ye
- Department of Pain, Tongji Hospital Affiliated to Shanghai Tongji University, Shanghai 200065, PR China
| | - H Xu
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an 710032, PR China
| | - H-J You
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|