1
|
Guo J, Kong Z, Yang S, Da J, Chu L, Han G, Liu J, Tan Y, Zhang J. Therapeutic effects of orexin-A in sepsis-associated encephalopathy in mice. J Neuroinflammation 2024; 21:131. [PMID: 38760784 PMCID: PMC11102217 DOI: 10.1186/s12974-024-03111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) causes acute and long-term cognitive deficits. However, information on the prevention and treatment of cognitive dysfunction after sepsis is limited. The neuropeptide orexin-A (OXA) has been shown to play a protective role against neurological diseases by modulating the inflammatory response through the activation of OXR1 and OXR2 receptors. However, the role of OXA in mediating the neuroprotective effects of SAE has not yet been reported. METHODS A mouse model of SAE was induced using cecal ligation perforation (CLP) and treated via intranasal administration of exogenous OXA after surgery. Mouse survival, in addition to cognitive and anxiety behaviors, were assessed. Changes in neurons, cerebral edema, blood-brain barrier (BBB) permeability, and brain ultrastructure were monitored. Levels of pro-inflammatory factors (IL-1β, TNF-α) and microglial activation were also measured. The underlying molecular mechanisms were investigated by proteomics analysis and western blotting. RESULTS Intranasal OXA treatment reduced mortality, ameliorated cognitive and emotional deficits, and attenuated cerebral edema, BBB disruption, and ultrastructural brain damage in mice. In addition, OXA significantly reduced the expression of the pro-inflammatory factors IL-1β and TNF-α, and inhibited microglial activation. In addition, OXA downregulated the expression of the Rras and RAS proteins, and reduced the phosphorylation of P-38 and JNK, thus inhibiting activation of the MAPK pathway. JNJ-10,397,049 (an OXR2 blocker) reversed the effect of OXA, whereas SB-334,867 (an OXR1 blocker) did not. CONCLUSION This study demonstrated that the intranasal administration of moderate amounts of OXA protects the BBB and inhibits the activation of the OXR2/RAS/MAPK pathway to attenuate the outcome of SAE, suggesting that OXA may be a promising therapeutic approach for the management of SAE.
Collapse
Affiliation(s)
- Jing Guo
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Zhuo Kong
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Sha Yang
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Jingjing Da
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Liangzhao Chu
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
2
|
He X, Ji P, Guo R, Ming X, Zhang H, Yu L, Chen Z, Gao S, Guo F. Regulation of the central amygdala on intestinal motility and behavior via the lateral hypothalamus in irritable bowel syndrome model mice. Neurogastroenterol Motil 2023; 35:e14498. [PMID: 36408759 DOI: 10.1111/nmo.14498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Impaired bidirectional communication between the gastrointestinal tract and the central nervous system (CNS) is closely related to the development of irritable bowel syndrome (IBS). Studies in patients with IBS have also shown significant activation of the hypothalamus and amygdala. However, how neural circuits of the CNS participate in and process the emotional and intestinal disorders of IBS remains unclear. METHODS The GABAergic neural pathway projecting from the central amygdala (CeA) to the lateral hypothalamus (LHA) in mice was investigated by retrograde tracking combined with fluorescence immunohistochemistry. Anxiety, depression-like behavior, and intestinal motility were observed in the water-immersion restraint stress group and the control group. Furthermore, the effects of the chemogenetic activation of the GABAergic neural pathway of CeA-LHA on behavior and intestinal motility, as well as the co-expression of orexin-A and c-Fos in the LHA, were explored. KEY RESULTS In our study, Fluoro-Gold retrograde tracking combined with fluorescence immunohistochemistry showed that GABAergic neurons in the CeA were projected to the LHA. The microinjection of the gamma-aminobutyric acid (GABA) receptor antagonist into the LHA relieved anxiety, depression-like behavior, and intestinal motility disorder in the IBS mice. The chemogenetic activation of GABAergic neurons in the CeA-LHA pathway led to anxiety, depression-like behavior, and intestinal motility disorder. In addition, GABAergic neurons in the CeA-LHA pathway inhibited the expression of orexin-A in the LHA, and orexin-A was co-expressed with GABAA receptors. CONCLUSIONS & INFERENCES The CeA-LHA GABAergic pathway might participate in the occurrence and development of IBS by regulating orexin-A neurons.
Collapse
Affiliation(s)
- Xiaoman He
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Pengfei Ji
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ruixiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xing Ming
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Lizheng Yu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ziyi Chen
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Okumura T, Nozu T, Ishioh M, Igarashi S, Kumei S, Ohhira M. Centrally administered butyrate improves gut barrier function, visceral sensation and septic lethality in rats. J Pharmacol Sci 2021; 146:183-191. [PMID: 34116731 DOI: 10.1016/j.jphs.2021.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Short chain fatty acids readily crosses the gut-blood and blood-brain barrier and acts centrally to influence neuronal signaling. We hypothesized that butyrate, a short-chain fatty acid produced by bacterial fermentation, in the central nervous system may play a role in the regulation of intestinal functions. Colonic permeability and visceral sensation was evaluated in rats. Septic lethality was evaluated in a sepsis model induced by subcutaneous administration of both lipopolysaccharide and colchicine. Intracisternal butyrate dose-dependently improved colonic hyperpermeability and visceral nociception. In contrast, subcutaneous injection of butyrate failed to change it. Intracisternal orexin 1 receptor antagonist or surgical vagotomy blocked the central butyrate-induced improvement of colonic hyperpermeability. The improvement of intestinal hyperpermeability by central butyrate or intracisternal orexin-A was blocked by cannabinoid 1 or 2 receptor antagonist. Intracisternal butyrate significantly improved survival period in septic rats. These results suggest that butyrate acts in the central nervous system to improve gut permeability and visceral nociception through cannabinoid signaling. Endogenous orexin in the brain may mediate the reduction of intestinal hyperpermeability by central butyrate through the vagus nerve. We would suggest that improvement of leaky gut by central butyrate may induce visceral antinociception and protection from septic lethality.
Collapse
Affiliation(s)
- Toshikatsu Okumura
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Masatomo Ishioh
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Sho Igarashi
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Shima Kumei
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Masumi Ohhira
- Department of General Medicine, Asahikawa Medical University, Japan
| |
Collapse
|
4
|
Okumura T, Ishioh M, Nozu T. Central regulatory mechanisms of visceral sensation in response to colonic distension with special reference to brain orexin. Neuropeptides 2021; 86:102129. [PMID: 33636498 DOI: 10.1016/j.npep.2021.102129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/08/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023]
Abstract
Visceral hypersensitivity is a major pathophysiology in irritable bowel syndrome (IBS). Although brain-gut interaction is considered to be involved in the regulation of visceral sensation, little had been known how brain controls visceral sensation. To improve therapeutic strategy in IBS, we should develop a novel approach to control visceral hypersensitivity. Here, we summarized recent data on central control of visceral sensation by neuropeptides in rats. Orexin, ghrelin or oxytocin in the brain is capable of inducing visceral antinociception. Dopamine, cannabinoid, adenosine, serotonin or opioid in the central nervous system (CNS) plays a role in the visceral hyposensitivity. Central ghrelin, levodopa or morphine could induce visceral antinociception via the orexinergic signaling. Orexin induces visceral antinociception through dopamine, cannabinoid, adenosine or oxytocin. Orexin nerve fibers are identified widely throughout the CNS and orexins are implicated in a number of functions. With regard to gastrointestinal functions, in addition to its visceral antinociception, orexin acts centrally to stimulate gastrointestinal motility and improve intestinal barrier function. Brain orexin is also involved in regulation of sleep/awake cycle and anti-depressive action. From these evidence, we would like to make a hypothesis that decreased orexin signaling in the brain may play a role in the pathophysiology in a part of patients with IBS who are frequently accompanied with sleep disturbance, depressive state and disturbed gut functions such as gut motility disturbance, leaky gut and visceral hypersensitivity.
Collapse
Affiliation(s)
- Toshikatsu Okumura
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan.
| | - Masatomo Ishioh
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| |
Collapse
|
5
|
Nakamura F, Kuribayashi S, Tanaka F, Kawami N, Fujiwara Y, Iwakiri K, Kusano M, Uraoka T. Impact of improvement of sleep disturbance on symptoms and quality of life in patients with functional dyspepsia. BMC Gastroenterol 2021; 21:78. [PMID: 33602148 PMCID: PMC7890897 DOI: 10.1186/s12876-021-01659-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS Functional dyspepsia (FD) is often comorbid with sleep disturbance. However, it is not fully understood how sleep disturbance affects the pathophysiology of FD. We aimed to investigate the relationship between FD and sleep disturbance. METHODS We prospectively enrolled 20 FD patients with sleep disturbance between December 2018 and July 2019. Patients took sleep aids for 4 weeks and filled out questionnaires before and after taking sleep aids. Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), and Athens Insomnia Scale (AIS) were used to evaluate the severity of their sleep disturbance. Modified Frequency Scale for the Symptoms of Gastroesophageal Reflux Disease (mFSSG), Gastrointestinal Symptom Rating Scale (GSRS), and the Japanese version of Patient Assessment of Constipation Quality of Life (JPAC-QOL) were used to evaluate the severity of GI symptoms. Short-Form 36-Item Health Survey (SF-36) was used to evaluate QOL. Pre- and post-sleep medication values of questionnaires were compared. RESULTS Among 20 enrolled patients, 16 completed the study protocol. Zolpidem, eszopiclone, and suvorexant were administered to six, nine, and one patient, respectively. Each median total score of questionnaires (pre-/post-sleep medication, respectively) was as follows: PSQI, 10.0/8.5; ESS, 12.5/5.0; AIS, 10.0/4.0; mFSSG, 21.0/16.0; GSRS, 44.0/31.0 (Pain in GSRS, 11.0/5.0); JPAC-QOL, 26.0/15.5; SF-36, 63.9/71.9. All of these results showed statistically significant differences between pre- and post-sleep medication (p < 0.05). CONCLUSIONS Improvement of sleep disturbance by administration of sleep aids resulted in improvement of GI symptoms and QOL in patients with FD. This effect may be related to pain modification.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi City, Gunma, 371-8511, Japan.,Digestive Disease Center, Kohseichuo General Hospital, 1-11-7 Mita, Meguro-ku, Tokyo, 153-8581, Japan
| | - Shiko Kuribayashi
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi City, Gunma, 371-8511, Japan.
| | - Fumio Tanaka
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-5-7 Asahi-cho, Abeno-ku, Osaka, 545-8586, Japan
| | - Noriyuki Kawami
- Department of Gastroenterology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-5-7 Asahi-cho, Abeno-ku, Osaka, 545-8586, Japan
| | - Katsuhiko Iwakiri
- Department of Gastroenterology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Motoyasu Kusano
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi City, Gunma, 371-8511, Japan
| | - Toshio Uraoka
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi City, Gunma, 371-8511, Japan
| |
Collapse
|
6
|
Igarashi S, Nozu T, Ishioh M, Kumei S, Saito T, Toki Y, Hatayama M, Yamamoto M, Shindo M, Tanabe H, Okumura T. Centrally administered orexin prevents lipopolysaccharide and colchicine induced lethality via the vagal cholinergic pathway in a sepsis model in rats. Biochem Pharmacol 2020; 182:114262. [DOI: 10.1016/j.bcp.2020.114262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022]
|
7
|
Mediavilla C. Bidirectional gut-brain communication: A role for orexin-A. Neurochem Int 2020; 141:104882. [PMID: 33068686 DOI: 10.1016/j.neuint.2020.104882] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
It is increasingly evident that bidirectional gut-brain signaling provides a communication pathway that uses neural, hormonal, and immunological routes to regulate homeostatic mechanisms such as hunger/satiety as well as emotions and inflammation. Hence, disruption of the gut-brain axis can cause numerous pathophysiologies, including obesity and intestinal inflammatory diseases. One chemical mediator in the gut-brain axis is orexin-A, given that hypothalamic orexin-A affects gastrointestinal motility and secretion, and peripheral orexin in the intestinal mucosa can modulate brain functions, making possible an orexinergic gut-brain network. It has been proposed that orexin-A acts on this axis to regulate nutritional processes, such as short-term intake, gastric acid secretion, and motor activity associated with the cephalic phase of feeding. Orexin-A has also been related to stress systems and stress responses via the hypothalamic-pituitary-adrenal axis. Recent studies on the relationship of orexin with immune system-brain communications in an animal model of colitis suggested an immunomodulatory role for orexin-A in signaling and responding to infection by reducing the production of pro-inflammatory cytokines (e.g., tumor necrosis factor α, interleukin-6, and monocyte chemoattractant protein-1). These studies suggested that orexin administration might be of potential therapeutic value in irritable bowel syndrome or chronic intestinal inflammatory diseases, in which gastrointestinal symptoms frequently coexist with behavioral disorders, including loss of appetite, anxiety, depression, and sleeping disorders. Interventions in the orexinergic system have been proposed as a therapeutic approach to these diseases and for the treatment of chemotherapeutic drug-related hyperalgesia and fatigue in cancer patients.
Collapse
Affiliation(s)
- Cristina Mediavilla
- Department of Psychobiology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain.
| |
Collapse
|
8
|
Adenosine A1 receptor agonist induces visceral antinociception via 5-HT1A, 5-HT2A, dopamine D1 or cannabinoid CB1 receptors, and the opioid system in the central nervous system. Physiol Behav 2020; 220:112881. [DOI: 10.1016/j.physbeh.2020.112881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023]
|
9
|
5-HT2A receptors but not cannabinoid receptors in the central nervous system mediate levodopa-induced visceral antinociception in conscious rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1419-1425. [DOI: 10.1007/s00210-020-01842-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
|
10
|
Haghparast A, Matini T, Rezaee L, Rahban M, Tehranchi A, Haghparast A. Involvement of Orexinergic System Within the Nucleus Accumbens in Pain Modulatory Role of the Lateral Hypothalamus in Orofacial Pain Model. Neurochem Res 2020; 45:851-859. [DOI: 10.1007/s11064-020-02957-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
|
11
|
Okumura T, Nozu T, Ishioh M, Igarashi S, Kumei S, Ohhira M. Brain orexin improves intestinal barrier function via the vagal cholinergic pathway. Neurosci Lett 2020; 714:134592. [DOI: 10.1016/j.neulet.2019.134592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/12/2019] [Accepted: 10/24/2019] [Indexed: 01/14/2023]
|
12
|
McDermott MV, Afrose L, Gomes I, Devi LA, Bobeck EN. Opioid-Induced Signaling and Antinociception Are Modulated by the Recently Deorphanized Receptor, GPR171. J Pharmacol Exp Ther 2019; 371:56-62. [PMID: 31308196 DOI: 10.1124/jpet.119.259242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
ProSAAS is one of the most widely expressed proteins throughout the brain and was recently found to be upregulated in chronic fibromyalgia patients. BigLEN is a neuropeptide that is derived from ProSAAS and was recently discovered to be the endogenous ligand for the orphan G protein-coupled receptor GPR171. Although BigLEN-GPR171 has been found to play a role in feeding and anxiety behaviors, it has not yet been explored in pain and opioid modulation. The purpose of this study was to evaluate this novel neuropeptide-receptor system in opioid-induced antinociception. We found that GPR171 is expressed in GABAergic neurons within the periaqueductal gray, which is a key brain area involved in pain modulation and opioid functions. We also found that, although the GPR171 agonist and antagonist do not have nociceptive effects on their own, they oppositely regulate morphine-induced antinociception with the agonist enhancing and antagonist reducing antinociception. Lastly, we showed that the GPR171 antagonist or receptor knockdown decreases signaling by the mu-opioid receptor, but not the delta-opioid receptor. Taken together, these results suggest that antagonism of the GPR171 receptor reduces mu opioid receptor signaling and morphine-induced antinociception, whereas the GPR171 agonist enhances morphine antinociception, suggesting that GPR171 may be a novel target toward the development of pain therapeutics. SIGNIFICANCE STATEMENT: GPR171 is a recently deorphanized receptor that is expressed within the periaqueductal gray and can regulate mu opioid receptor signaling and antinociception. This research may contribute to the development of new therapeutics to treat pain.
Collapse
Affiliation(s)
- Max V McDermott
- Department of Biology, Utah State University, Logan, Utah (M.V.M., L.A., E.N.B.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Leela Afrose
- Department of Biology, Utah State University, Logan, Utah (M.V.M., L.A., E.N.B.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Ivone Gomes
- Department of Biology, Utah State University, Logan, Utah (M.V.M., L.A., E.N.B.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Lakshmi A Devi
- Department of Biology, Utah State University, Logan, Utah (M.V.M., L.A., E.N.B.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Erin N Bobeck
- Department of Biology, Utah State University, Logan, Utah (M.V.M., L.A., E.N.B.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| |
Collapse
|
13
|
Okumura T, Nozu T, Kumei S, Ohhira M. Central oxytocin signaling mediates the central orexin-induced visceral antinociception through the opioid system in conscious rats. Physiol Behav 2019; 198:96-101. [DOI: 10.1016/j.physbeh.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
|
14
|
Role of the cannabinoid signaling in the brain orexin- and ghrelin-induced visceral antinociception in conscious rats. J Pharmacol Sci 2018; 137:230-232. [DOI: 10.1016/j.jphs.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/13/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022] Open
|
15
|
Okumura T, Nozu T, Kumei S, Takakusaki K, Ohhira M. Ghrelin acts centrally to induce an antinociceptive action during colonic distension through the orexinergic, dopaminergic and opioid systems in conscious rats. Brain Res 2018; 1686:48-54. [DOI: 10.1016/j.brainres.2018.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 02/06/2018] [Accepted: 02/17/2018] [Indexed: 02/08/2023]
|
16
|
Sheng Q, Xue Y, Wang Y, Chen AQ, Liu C, Liu YH, Chu HY, Chen L. The Subthalamic Neurons are Activated by Both Orexin-A and Orexin-B. Neuroscience 2017; 369:97-108. [PMID: 29138106 DOI: 10.1016/j.neuroscience.2017.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 02/02/2023]
Abstract
The subthalamic nucleus is an important nucleus in the indirect pathway of the basal ganglia circuit and therefore is involved in motor control under both normal and pathological conditions. Morphological studies reveal that the subthalamic nucleus receives relatively dense orexinergic projections originating from the hypothalamus. Both orexin-1 (OX1) and orexin-2 (OX2) receptors are expressed in the subthalamic nucleus. To explore the functions of orexinergic system in the subthalamic nucleus, extracellular electrophysiological recordings and behavioral tests were performed in the present study. Exogenous application of orexin-A significantly increased the spontaneous firing rate from 5.70 ± 0.66 Hz to 9.87 ± 1.18 Hz in 64.00% subthalamic neurons recorded. OX1 receptors are involved in orexin-A-induced excitation. Application of orexin-B increased the firing rate from 7.47 ± 0.92 Hz to 11.85 ± 1.39 Hz in 80.95% subthalamic neurons recorded, entirely through OX2 receptors. Both OX1 and OX2 receptor antagonists decreased the firing rate in 43.75% and 62.50% subthalamic neurons recorded respectively, suggesting the involvement of endogenous orexinergic system in the control of spontaneous firing activity. Further elevated body swing test revealed that microinjection of orexins and the receptor antagonists into the subthalamic nucleus induced contralateral-biased swing and ipsilateral-biased swing, respectively. Taken together, the present study suggests that orexins play important roles in the subthalamic nucleus which may provide further evidence for the involvement of subthalamic orexinergic tone in Parkinson's disease. SIGNIFICANCE Previous morphological studies indicate that the subthalamic nucleus receives orexinergic innervation and expresses both OX1 and OX2 receptors. Using in vivo multibarrel electrophysiological recordings, the present study revealed that exogenous application of orexin-A and orexin-B increased the spontaneous firing rate of the subthalamic neurons through OX1 and OX2 receptors. Endogenous orexinergic system was involved in the control of spontaneous firing of the subthalamic neurons. Further behavioral test revealed that intrasubthalamic application of orexins and the receptor antagonists induced biased swing behavior. The present study may provide further evidence for the involvement of subthalamic orexinergic tone in Parkinson's disease.
Collapse
Affiliation(s)
- Qing Sheng
- Department of Physiology, Qingdao University, Qingdao 266071, China
| | - Yan Xue
- Department of Physiology, Qingdao University, Qingdao 266071, China
| | - Ying Wang
- Department of Physiology, Qingdao University, Qingdao 266071, China
| | - An-Qi Chen
- Department of Physiology, Qingdao University, Qingdao 266071, China
| | - Cui Liu
- Department of Physiology, Qingdao University, Qingdao 266071, China
| | - Yun-Hai Liu
- Department of Physiology, Qingdao University, Qingdao 266071, China
| | - Hong-Yan Chu
- Department of Physiology, Qingdao University, Qingdao 266071, China
| | - Lei Chen
- Department of Physiology, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
17
|
Razavi BM, Hosseinzadeh H. A review of the role of orexin system in pain modulation. Biomed Pharmacother 2017; 90:187-193. [DOI: 10.1016/j.biopha.2017.03.053] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022] Open
|
18
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
19
|
Gong Y, Liu Y, Liu F, Wang S, Jin H, Guo F, Xu L. Ghrelin fibers from lateral hypothalamus project to nucleus tractus solitaries and are involved in gastric motility regulation in cisplatin-treated rats. Brain Res 2017; 1659:29-40. [PMID: 28093190 DOI: 10.1016/j.brainres.2017.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 12/28/2016] [Accepted: 01/01/2017] [Indexed: 12/16/2022]
Abstract
Ghrelin can alleviate cancer chemotherapy-induced dyspepsia in rodents, though the neural mechanisms involved are not known. Therefore, ghrelin projections from the lateral hypothalamus (LH) and its involvement in the regulation of gastric motility in cisplatin-treated rats were investigated with a multi-disciplined approach. Retrograde tracing combined with fluoro-immunohistochemical staining were used to investigate ghrelin fiber projections arising from LH and projecting to nucleus tractus solitaries (NTS). Results revealed that ghrelin fibers originating in LH project to NTS. Expression of ghrelin and its receptor growth hormone secretagogue receptor (GHS-R1a) in LH and NTS were detected by Western Blot. 2days after cisplatin dosing, expression of ghrelin in LH decreased while GHS-R1a in both LH and NTS increased. In electrophysiological experiments, the effects of N-methyl-d-aspartate (NMDA) microinjection in LH on neuronal discharge of gastric distension-responsive neurons in NTS and gastric motility were assessed. NMDA in LH excited most of ghrelin-responsive gastric distension (GD)-sensitive neurons in NTS and promoted gastric motility. This effect was partially blocked by ghrelin antibody in NTS. Furthermore, the excitatory effects of NMDA in cisplatin-treated rats were weaker than those in saline-treated rats. Behaviorally, cisplatin induced a significant increase of kaolin consumption and decrease of food intake. These studies reveal a decreased expression of ghrelin in LH and up-regulation of GHS-R1a in LH and NTS, which are involved in the regulation of GD neuronal discharge in NTS and gastric motility.
Collapse
Affiliation(s)
- Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China.
| | - Yang Liu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Fei Liu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Shasha Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Hong Jin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Feifei Guo
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Luo Xu
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
20
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Lipopolysaccharide induces visceral hypersensitivity: role of interleukin-1, interleukin-6, and peripheral corticotropin-releasing factor in rats. J Gastroenterol 2017; 52:72-80. [PMID: 27075754 DOI: 10.1007/s00535-016-1208-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/24/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Lipopolysaccharide (LPS) induces visceral hypersensitivity, and corticotropin-releasing factor (CRF) also modulates visceral sensation. Besides, LPS increases CRF immunoreactivity in rat colon, which raises the possibility of the existence of a link between LPS and the CRF system in modulating visceral sensation. The present study tried to clarify this possibility. METHODS Visceral sensation was assessed by abdominal muscle contractions induced by colonic balloon distention, i.e., visceromotor response, electrophysiologically in conscious rats. The threshold of visceromotor response was measured before and after administration of drugs. RESULTS LPS at a dose of 1 mg/kg subcutaneously (sc) decreased the threshold at 3 h after the administration. Intraperitoneal (ip) administration of anakinra (20 mg/kg), an interleukin-1 (IL-1) receptor antagonist, or interleukin-6 (IL-6) antibody (16.6 µg/kg) blocked this effect. Additionally, IL-1β (10 µg/kg, sc) or IL-6 (10 µg/kg, sc) induced visceral allodynia. Astressin (200 µg/kg, ip), a non-selective CRF receptor antagonist, abolished the effect of LPS, but astressin2-B (200 µg/kg, ip), a CRF receptor type 2 (CRF2) antagonist, did not alter it. Peripheral CRF receptor type 1 (CRF1) stimulation by cortagine (60 µg/kg, ip) exaggerated the effect of LPS, but activation of CRF2 by urocortin 2 (60 µg/kg, ip) abolished it. CONCLUSIONS LPS induced visceral allodynia possibly through stimulating IL-1 and IL-6 release. In addition, this effect was mediated through peripheral CRF signaling. Since the LPS-cytokine system is thought to contribute to altered visceral sensation in the patients with irritable bowel syndrome, these results may further suggest that CRF plays a crucial role in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan.
| | - Saori Miyagishi
- Department of General Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| |
Collapse
|
21
|
Chen XY, Chen L, Du YF. Orexin-A increases the firing activity of hippocampal CA1 neurons through orexin-1 receptors. J Neurosci Res 2016; 95:1415-1426. [PMID: 27796054 DOI: 10.1002/jnr.23975] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Xin-Yi Chen
- Department of Neurology; Provincial Hospital Affiliated to Shandong University; Jinan Shandong China
| | - Lei Chen
- Department of Physiology; Qingdao University; Qingdao China
| | - Yi-Feng Du
- Department of Neurology; Provincial Hospital Affiliated to Shandong University; Jinan Shandong China
| |
Collapse
|
22
|
Xue Y, Yang YT, Liu HY, Chen WF, Chen AQ, Sheng Q, Chen XY, Wang Y, Chen H, Liu HX, Pang YY, Chen L. Orexin-A increases the activity of globus pallidus neurons in both normal and parkinsonian rats. Eur J Neurosci 2016; 44:2247-57. [PMID: 27336845 DOI: 10.1111/ejn.13323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/04/2016] [Accepted: 06/21/2016] [Indexed: 02/06/2023]
Abstract
Orexin is a member of neuropeptides which was first identified in the hypothalamus. The globus pallidus is a key structure in the basal ganglia, which is involved in both normal motor function and movement disorders. Morphological studies have shown the expression of both OX1 and OX2 receptors in the globus pallidus. Employing single unit extracellular recordings and behavioural tests, the direct in vivo electrophysiological and behavioural effects of orexin-A in the globus pallidus were studied. Micro-pressure administration of orexin-A significantly increased the spontaneous firing rate of pallidal neurons. Correlation analysis revealed a negative correlation between orexin-A induced excitation and the basal firing rate. Furthermore, application of the specific OX1 receptor antagonist, SB-334867, decreased the firing rate of pallidal neurons, suggesting that endogenous orexinergic systems modulate the firing activity of pallidal neurons. Orexin-A increased the excitability of pallidal neurons through both OX1 and OX2 receptors. In 6-hydroxydopamine parkinsonian rats, orexin-A-induced increase in firing rate of pallidal neurons was stronger than that in normal rats. Immunostaining revealed positive OX1 receptor expression in the globus pallidus of both normal and parkinsonian rats. Finally, postural test showed that unilateral microinjection of orexin-A led to contralateral deflection in the presence of systemic haloperidol administration. Further elevated body swing test revealed that pallidal orexin-A and SB-334867 induced contralateral-biased swing and ipsilateral-biased swing respectively. Based on the electrophysiological and behavioural findings of orexin-A in the globus pallidus, the present findings may provide a rationale for the pathogenesis and treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Yan Xue
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Yu-Ting Yang
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Hong-Yun Liu
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China.,Department of Pathology, Qingdao Municipal Hospital, Qingdao, China
| | - Wen-Fang Chen
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - An-Qi Chen
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Qing Sheng
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xin-Yi Chen
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Ying Wang
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Hua Chen
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China
| | - Hong-Xia Liu
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Ya-Yan Pang
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Lei Chen
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, Shandong, China
| |
Collapse
|
23
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Water avoidance stress induces visceral hyposensitivity through peripheral corticotropin releasing factor receptor type 2 and central dopamine D2 receptor in rats. Neurogastroenterol Motil 2016; 28:522-31. [PMID: 26662216 DOI: 10.1111/nmo.12747] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/11/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Water avoidance stress (WAS) is reported to induce functional changes in visceral sensory function in rodents, but the results which have been demonstrated so far are not consistent, i.e., hypersensitivity or hyposensitivity. We determined the effect of WAS on visceral sensation and evaluated the mechanisms of the action. METHODS Visceral sensation was assessed by abdominal muscle contractions induced by colonic balloon distention, i.e., visceromotor response (VMR), measured electrophysiologically in conscious rats. The electromyogram electrodes were acutely implanted under anesthesia on the day of the experiment. The threshold of VMR was measured before and after WAS for 1 h. To explore the mechanisms of WAS-induced response, drugs were administered 10 min prior to the initiation of WAS. KEY RESULTS WAS significantly increased the threshold of VMR, and this effect was no longer detected at 24 h after. Intraperitoneal injection of astressin2 -B (200 μg/kg), a corticotropin releasing factor (CRF) receptor type 2 antagonist abolished the response by WAS. Subcutaneous (sc) injection of sulpiride (200 mg/kg), a dopamine D2 receptor antagonist blocked the response, while sc domperidone (10 mg/kg), a peripheral dopamine D2 receptor antagonist did not alter it. Naloxone (1 mg/kg, sc), an opioid antagonist did not modify it either. CONCLUSIONS & INFERENCES WAS induced visceral hyposensitivity through peripheral CRF receptor type 2 and central dopamine D2 receptor, but not through opioid pathways. As altered pain inhibitory system was reported to be observed in the patients with irritable bowel syndrome, CRF and dopamine signaling might contribute to the pathophysiology.
Collapse
Affiliation(s)
- T Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - S Miyagishi
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - R Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - K Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - T Okumura
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
24
|
Adenosine A1 receptors mediate the intracisternal injection of orexin-induced antinociceptive action against colonic distension in conscious rats. J Neurol Sci 2016; 362:106-10. [DOI: 10.1016/j.jns.2016.01.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 12/12/2022]
|
25
|
Okumura T, Nozu T, Kumei S, Takakusaki K, Miyagishi S, Ohhira M. Levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain in conscious rats. J Pharmacol Sci 2016; 130:123-7. [DOI: 10.1016/j.jphs.2016.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/24/2015] [Accepted: 01/20/2016] [Indexed: 02/08/2023] Open
|
26
|
Involvement of the dopaminergic system in the central orexin-induced antinociceptive action against colonic distension in conscious rats. Neurosci Lett 2015; 605:34-8. [DOI: 10.1016/j.neulet.2015.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 12/12/2022]
|