1
|
Szczygielski J, Hubertus V, Kruchten E, Müller A, Albrecht LF, Schwerdtfeger K, Oertel J. Prolonged course of brain edema and neurological recovery in a translational model of decompressive craniectomy after closed head injury in mice. Front Neurol 2023; 14:1308683. [PMID: 38053795 PMCID: PMC10694459 DOI: 10.3389/fneur.2023.1308683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Background The use of decompressive craniectomy in traumatic brain injury (TBI) remains a matter of debate. According to the DECRA trial, craniectomy may have a negative impact on functional outcome, while the RescueICP trial revealed a positive effect of surgical decompression, which is evolving over time. This ambivalence of craniectomy has not been studied extensively in controlled laboratory experiments. Objective The goal of the current study was to investigate the prolonged effects of decompressive craniectomy (both positive and negative) in an animal model. Methods Male mice were assigned to the following groups: sham, decompressive craniectomy, TBI and TBI followed by craniectomy. The analysis of functional outcome was performed at time points 3d, 7d, 14d and 28d post trauma according to the Neurological Severity Score and Beam Balance Score. At the same time points, magnetic resonance imaging was performed, and brain edema was analyzed. Results Animals subjected to both trauma and craniectomy presented the exacerbation of the neurological impairment that was apparent mostly in the early course (up to 7d) after injury. Decompressive craniectomy also caused a significant increase in brain edema volume (initially cytotoxic with a secondary shift to vasogenic edema and gliosis). Notably, delayed edema plus gliosis appeared also after decompression even without preceding trauma. Conclusion In prolonged outcomes, craniectomy applied after closed head injury in mice aggravates posttraumatic brain edema, leading to additional functional impairment. This effect is, however, transient. Treatment options that reduce brain swelling after decompression may accelerate neurological recovery and should be explored in future experiments.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Instutute of Neuropathology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Institute of Medical Sciences, University of Rzeszów, Rzeszow, Poland
| | - Vanessa Hubertus
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Department of Neurosurgery, Charité University Medicine, Berlin, Germany
- Berlin Institute of Health at Charité, Berlin, Germany
| | - Eduard Kruchten
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Institute of Interventional and Diagnostic Radiology, Karlsruhe, Germany
| | - Andreas Müller
- Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Lisa Franziska Albrecht
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| |
Collapse
|
2
|
Szczygielski J, Glameanu C, Müller A, Klotz M, Sippl C, Hubertus V, Schäfer KH, Mautes AE, Schwerdtfeger K, Oertel J. Changes in Posttraumatic Brain Edema in Craniectomy-Selective Brain Hypothermia Model Are Associated With Modulation of Aquaporin-4 Level. Front Neurol 2018; 9:799. [PMID: 30333785 PMCID: PMC6176780 DOI: 10.3389/fneur.2018.00799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
Both hypothermia and decompressive craniectomy have been considered as a treatment for traumatic brain injury. In previous experiments we established a murine model of decompressive craniectomy and we presented attenuated edema formation due to focal brain cooling. Since edema development is regulated via function of water channel proteins, our hypothesis was that the effects of decompressive craniectomy and of hypothermia are associated with a change in aquaporin-4 (AQP4) concentration. Male CD-1 mice were assigned into following groups (n = 5): sham, decompressive craniectomy, trauma, trauma followed by decompressive craniectomy and trauma + decompressive craniectomy followed by focal hypothermia. After 24 h, magnetic resonance imaging with volumetric evaluation of edema and contusion were performed, followed by ELISA analysis of AQP4 concentration in brain homogenates. Additional histopathological analysis of AQP4 immunoreactivity has been performed at more remote time point of 28d. Correlation analysis revealed a relationship between AQP4 level and both volume of edema (r2 = 0.45, p < 0.01, **) and contusion (r2 = 0.41, p < 0.01, **) 24 h after injury. Aggregated analysis of AQP4 level (mean ± SEM) presented increased AQP4 concentration in animals subjected to trauma and decompressive craniectomy (52.1 ± 5.2 pg/mL, p = 0.01; *), but not to trauma, decompressive craniectomy and hypothermia (45.3 ± 3.6 pg/mL, p > 0.05; ns) as compared with animals subjected to decompressive craniectomy only (32.8 ± 2.4 pg/mL). However, semiquantitative histopathological analysis at remote time point revealed no significant difference in AQP4 immunoreactivity across the experimental groups. This suggests that AQP4 is involved in early stages of brain edema formation after surgical decompression. The protective effect of selective brain cooling may be related to change in AQP4 response after decompressive craniectomy. The therapeutic potential of this interaction should be further explored.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Institute of Neuropathology, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Cosmin Glameanu
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Andreas Müller
- Department of Radiology, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Markus Klotz
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Christoph Sippl
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Vanessa Hubertus
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Angelika E Mautes
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
3
|
Volume of Brain Herniation After Decompressive Craniectomy in Patients with Traumatic Brain Injury. World Neurosurg 2018; 118:e414-e421. [DOI: 10.1016/j.wneu.2018.06.204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 11/18/2022]
|
4
|
Hou Z, Tian R, Han F, Hao S, Wu W, Mao X, Tao X, Lu T, Dong J, Zhen Y, Liu B. Decompressive craniectomy protects against hippocampal edema and behavioral deficits at an early stage of a moderately controlled cortical impact brain injury model in adult male rats. Behav Brain Res 2018; 345:1-8. [PMID: 29452194 DOI: 10.1016/j.bbr.2018.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/11/2018] [Accepted: 02/08/2018] [Indexed: 11/29/2022]
Abstract
A decompressive craniectomy (DC) has been shown to be a life-saving therapeutic treatment for traumatic brain injury (TBI) patients, which also might result in post-operative behavioral dysfunction. However, there is still no definite conclusion about whether the behavioral dysfunction already existed at an early stage after the DC operation or is just a long-term post-operation complication. Therefore, the aim of the present study was to analyze whether DC treatment was beneficial to behavioral function at an early stage post TBI. In this study, we established a controlled cortical impact injury rat model to evaluate the therapeutic effect of DC treatment on behavioral deficits at 1 d, 2 d, 3 d and 7 d after TBI. Our results showed that rats suffered significant behavioral and mood deficits after TBI compared to the control group, while decompressive craniectomy treatment could normalize MMP-9 expression levels and reduce hippocampal edema formation, stabilize the expression of Synapsin I, which was a potential indicator of maintaining the hippocampal synaptic function, thus counteracting behavioral but not mood decay in rats subjected to TBI. In conclusion, decompressive craniectomy, excepting for its life-saving effect, could also play a potential beneficial neuroprotective role on behavioral but not mood deficits at an early stage of moderate traumatic brain injury in rats.
Collapse
Affiliation(s)
- Zonggang Hou
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing, 100050, PR China
| | - Runfa Tian
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing, 100050, PR China
| | - Feifei Han
- Department of Diagnostics, Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing, 100050, PR China
| | - Weichuan Wu
- Department of Neurosurgery, Baoan District Central Hospital, Shenzhen, 518102, PR China
| | - Xiang Mao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, PR China
| | - Xiaogang Tao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing, 100050, PR China
| | - Te Lu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing, 100050, PR China
| | - Jinqian Dong
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing, 100050, PR China
| | - Yun Zhen
- Department of Neurosurgery, Baoan District Central Hospital, Shenzhen, 518102, PR China.
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing, 100050, PR China; Neurotrauma Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, PR China; Nerve Injury and Repair Center of Beijing Institute for Brain Disorders, Beijing, 100050, PR China.
| |
Collapse
|
5
|
Brown DA, Wijdicks EFM. Decompressive craniectomy in acute brain injury. HANDBOOK OF CLINICAL NEUROLOGY 2017; 140:299-318. [PMID: 28187804 DOI: 10.1016/b978-0-444-63600-3.00016-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Decompressive surgery to reduce pressure under the skull varies from a burrhole, bone flap to removal of a large skull segment. Decompressive craniectomy is the removal of a large enough segment of skull to reduce refractory intracranial pressure and to maintain cerebral compliance for the purpose of preventing neurologic deterioration. Decompressive hemicraniectomy and bifrontal craniectomy are the most commonly performed procedures. Bifrontal craniectomy is most often utilized with generalized cerebral edema in the absence of a focal mass lesion and when there are bilateral frontal contusions. Decompressive hemicraniectomy is most commonly considered for malignant middle cerebral artery infarcts. The ethical predicament of deciding to go ahead with a major neurosurgical procedure with the purpose of avoiding brain death from displacement, but resulting in prolonged severe disability in many, are addressed. This chapter describes indications, surgical techniques, and complications. It reviews results of recent clinical trials and provides a reasonable assessment for practice.
Collapse
Affiliation(s)
- D A Brown
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - E F M Wijdicks
- Division of Critical Care Neurology, Mayo Clinic and Neurosciences Intensive Care Unit, Mayo Clinic Campus, Saint Marys Hospital, Rochester, MN, USA.
| |
Collapse
|
6
|
Stoner KE, Abode-Iyamah KO, Grosland NM, Howard MA. Volume of Brain Herniation in Patients with Ischemic Stroke After Decompressive Craniectomy. World Neurosurg 2016; 96:101-106. [PMID: 27591100 DOI: 10.1016/j.wneu.2016.08.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Decompressive craniectomy procedures are performed in patients with malignant intracranial hypertension. A bone flap is removed to relieve pressure. Later, a second operation is performed to reconstruct the skull after brain swelling has resolved. This surgical treatment would be improved if it were possible to perform a single operation that decompressed the brain acutely and eliminated the need for a second operation. To design a device and procedure that achieve this objective, it is essential to understand how the brain swells after a craniectomy procedure. METHODS We identified 20 patients with ischemic stroke who underwent a decompressive hemicraniectomy operation. Skull defect morphology and postoperative brain swelling were measured using computed tomography scan data. Additional intracranial volume created by placing a hypothetical cranial plate implant offset from the skull surface by 5 mm was measured for each patient. RESULTS The average craniectomy area and brain herniation volume was 9999 ± 1283 mm2 and 30.48 ± 23.56 mL, respectively. In all patients, the additional volume created by this hypothetical implant exceeded the volume of brain herniation observed. CONCLUSIONS These findings show that a cranial plate with a 5-mm offset accommodates the brain swelling that occurs in this patient population.
Collapse
Affiliation(s)
- Kirsten E Stoner
- Department of Biomedical Engineering, University of Iowa, Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa, USA
| | | | - Nicole M Grosland
- Department of Biomedical Engineering, University of Iowa, Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.
| |
Collapse
|
7
|
Tian R, Hou Z, Hao S, Wu W, Mao X, Tao X, Lu T, Liu B. Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats. Brain Res 2016; 1637:1-13. [PMID: 26826009 DOI: 10.1016/j.brainres.2016.01.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
Inflammation and oxidative stress are the two major causes of apoptosis after traumatic brain injury (TBI). Most previous studies of the neuroprotective effects of hydrogen-rich water on TBI primarily focused on antioxidant effects. The present study investigated whether hydrogen-rich water (HRW) could attenuate brain damage and inflammation after traumatic brain injury in rats. A TBI model was induced using a controlled cortical impact injury. HRW or distilled water was injected intraperitoneally daily following surgery. We measured survival rate, brain edema, blood-brain barrier (BBB) breakdown and neurological dysfunction in all animals. Changes in inflammatory cytokines, inflammatory cells and Cho/Cr metabolites in brain tissues were also detected. Our results demonstrated that TBI-challenged rats exhibited significant brain injuries that were characterized by decreased survival rate and increased BBB permeability, brain edema, and neurological dysfunction, while HRW treatment ameliorated the consequences of TBI. HRW treatment also decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β and HMGB1), inflammatory cell number (Iba1) and inflammatory metabolites (Cho) and increased the levels of an anti-inflammatory cytokine (IL-10) in the brain tissues of TBI-challenged rats. In conclusion, HRW could exert a neuroprotective effect against TBI and attenuate inflammation, which suggests HRW as an effective therapeutic strategy for TBI patients.
Collapse
Affiliation(s)
- Runfa Tian
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China
| | - Zonggang Hou
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China
| | - Weichuan Wu
- Department of Neurosurgery, Baoan Central Hospital, Shenzhen 518102, PR China
| | - Xiang Mao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230000, PR China
| | - Xiaogang Tao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China
| | - Te Lu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China; Neurotrauma Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, PR China; Nerve Injury and Repair Center of Beijing Institute for Brain Disorders, Beijing 100050, PR China; Department of Neurotrauma, General Hospital of Armed Police Forces, Beijing 100039, PR China.
| |
Collapse
|