Afarinesh MR, Behzadi G. The Effects of De-Whiskering and Congenital Hypothyroidism on The Development of Nitrergic Neurons in Rat Primary Somatosensory and Motor Cortices.
CELL JOURNAL 2018;
20:157-167. [PMID:
29633592 PMCID:
PMC5893286 DOI:
10.22074/cellj.2018.5112]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 11/25/2022]
Abstract
Objective
The aim of the present study is to investigate the effects of chronic whisker deprivation on possible alterations to
the development of nitrergic neurons in the whisker part of the somatosensory (wS1) and motor (wM1) cortices in offspring
with congenital hypothyroidism (CH).
Materials and Methods
In the experimental study, CH was induced by adding propylthiouracil to the rats drinking water from
embryonic day 16 to postnatal day (PND) 60. In whisker-deprived (WD) pups, all the whiskers were trimmed from PND 1 to
60. Nitrergic interneurons in the wS1/M1 cortices were detected by NADPH-diaphorase histochemistry staining technique in
the control (Ctl), Ctl+WD, Hypo and Hypo+WD groups.
Results
In both wS1 and wM1 cortices the number of nitrergic neurons was significantly reduced in the Hypo and
Hypo+WD groups compared to Ctl and Ctl+WD groups, respectively (P<0.05) while bilateral whisker deprivation had no
remarkable effect. The mean soma diameter size of NADPH-d labeled neurons in the Ctl+WD and Hypo+WD groups
was decreased compared to the Ctl and Hypo groups, respectively. A similar patterns of decreased NADPH-d labeled
neurons in the wS1/M1 cortices occur in the processes of nitrergic neurons in both congenital hypothyroidism and
whisker deprivation.
Conclusion
Our results suggest that both congenital hypothyroidism and whisker deprivation may disturb normal
development of the wS1 and wM1 cortical circuits in which nitrergic neurons are involved.
Collapse