1
|
Bauer M, Glowacka M, Kamysz W, Kleczkowska P. Marine Peptides: Potential Basic Structures for the Development of Hybrid Compounds as Multitarget Therapeutics for the Treatment of Multifactorial Diseases. Int J Mol Sci 2024; 25:12601. [PMID: 39684313 DOI: 10.3390/ijms252312601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Marine-derived peptides display potent antihypertensive, antioxidant, analgesic and antimicrobial biological effects. Some of them have also been found to have anticancer activity via various mechanisms differing from those of continental organisms. This diversity of properties-together with the peptides' efficacy, which has been confirmed in several in vitro and in vivo studies-make these compounds attractive as functional ingredients in pharmacy, especially in regard to multitarget drugs known as hybrids. Given the possibilities offered by chimeric structures, it is expected that a hybridization strategy based on a marine-derived compound could result in a long-awaited success in the development of new effective compounds to combat a range of complex diseases. However, despite the fact that the biological activity of such new hybrids may exceed that of their parent compounds, there is still an urgent need to carefully determine their potential off-targets and thus possible clinically important side effects. Given the above, the aim of this paper is to provide information on compounds of marine origin with peptide structures and to verify the occurrence and usage of hybrid compounds built from these structures. Furthermore, the authors believe that information presented here will serve to increase public awareness of the new opportunities arising from the combination of hybridization strategies with marine molecules with known structures and biological properties, thereby accelerating the development of effective drug candidates.
Collapse
Affiliation(s)
- Marta Bauer
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Magdalena Glowacka
- Institute of Psychology and Human Sciences, WSEI Academy, 20-209 Lublin, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Patrycja Kleczkowska
- Institute of Psychology and Human Sciences, WSEI Academy, 20-209 Lublin, Poland
- Maria Sklodowska-Curie Medical Academy in Warsaw, 03-411 Warsaw, Poland
| |
Collapse
|
2
|
Breault É, Desgagné M, Neve JD, Côté J, Barlow TMA, Ballet S, Sarret P. Multitarget ligands that comprise opioid/nonopioid pharmacophores for pain management: Current state of the science. Pharmacol Res 2024; 209:107408. [PMID: 39307212 DOI: 10.1016/j.phrs.2024.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Chronic pain, which affects more than one-third of the world's population, represents one of the greatest medical challenges of the 21st century, yet its effective management remains sub-optimal. The 'gold standard' for the treatment of moderate to severe pain consists of opioid ligands, such as morphine and fentanyl, that target the µ-opioid receptor (MOP). Paradoxically, these opioids also cause serious side effects, including constipation, respiratory depression, tolerance, and addiction. In addition, the development of opioid-use disorders, such as opioid diversion, misuse, and abuse, has led to the current opioid crisis, with dramatic increases in addiction, overdoses, and ultimately deaths. As pain is a complex, multidimensional experience involving a variety of pathways and mediators, dual or multitarget ligands that can bind to more than one receptor and exert complementary analgesic effects, represent a promising avenue for pain relief. Indeed, unlike monomodal therapeutic approaches, the modulation of several endogenous nociceptive systems can often result in an additive or even synergistic effect, thereby improving the analgesic-to-side-effect ratio. Here, we provide a comprehensive overview of research efforts towards the development of dual- or multi-targeting opioid/nonopioid hybrid ligands for effective and safer pain management. We reflect on the underpinning discovery rationale by discussing the design, medicinal chemistry, and in vivo pharmacological effects of multitarget antinociceptive compounds.
Collapse
Affiliation(s)
- Émile Breault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Jérôme Côté
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Philippe Sarret
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
3
|
Wang SY, Zhang YZ, Liu XH, Guo XC, Wang XF, Wang JR, Liu BJ, Han FT, Zhang Y, Wang CL. BNT12, a novel hybrid peptide of opioid and neurotensin pharmacophores, produces potent central antinociception with limited side effects. Eur J Pharmacol 2024; 978:176775. [PMID: 38925288 DOI: 10.1016/j.ejphar.2024.176775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The development of multitarget opioid drugs has emerged as an attractive approach for innovative pain management with reduced side effects. In the present study, a novel hybrid peptide BNT12 containing the opioid and neurotensin (NT)-like fragments was synthesized and pharmacologically characterized. In acute radiant heat paw withdrawal test, intracerebroventricular (i.c.v.) administration of BNT12 produced potent antinociception in mice. The central antinociceptive activity of BNT12 was mainly mediated by μ-, δ-opioid receptor, neurotensin receptor type 1 (NTSR1) and 2 (NTSR2), supporting a multifunctional agonism of BNT12 in the functional assays. BNT12 also exhibited significant antinociceptive effects in spared nerve injury (SNI)-neuropathic pain, complete Freund's adjuvant (CFA)-induced inflammatory pain, acetic acid-induced visceral and formalin-induced pain after i.c.v. administration. Furthermore, BNT12 exhibited substantial reduction of acute antinociceptive tolerance, shifted the dose-response curve to the right by only 1.3-fold. It is noteworthy that BNT12 showed insignificant chronic antinociceptive tolerance at the supraspinal level. In addition, BNT12 exhibited reduced or no opioid-like side effects on conditioned place preference (CPP) response, naloxone-precipitated withdrawal response, acute hyperlocomotion, motor coordination, gastrointestinal transit, and cardiovascular responses. The present investigation demonstrated that the novel hybrid peptide BNT12 might serve as a promising analgesic candidate with limited opioid-like side effects.
Collapse
Affiliation(s)
- Si-Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Xiao-Han Liu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Xue-Ci Guo
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | | | - Jia-Ran Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Bing-Jie Liu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Feng-Tong Han
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China.
| |
Collapse
|
4
|
Serafin P, Szeleszczuk Ł, Zhukov I, Szűcs E, Gombos D, Stefanucci A, Mollica A, Pisklak DM, Kleczkowska P. Opioid/Dopamine Receptor Binding Studies, NMR and Molecular Dynamics Simulation of LENART01 Chimera, an Opioid-Bombesin-like Peptide. Molecules 2024; 29:272. [PMID: 38202853 PMCID: PMC10780910 DOI: 10.3390/molecules29010272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
The design and development of hybrid compounds as a new class of drug candidates remains an excellent opportunity to improve the pharmacological properties of drugs (including enzymatic stability, efficacy and pharmacokinetic and pharmacodynamic profiles). In addition, considering various complex diseases and/or disorders, the conjugate chemistry approach is highly acceptable and justified. Opioids have long been recognized as the most potent analgesics and serve as the basic pharmacophore for potent hybrid compounds that may be useful in pain management. However, a risk of tolerance and physical dependence exists. Since dopamine receptors have been implicated in the aforementioned adverse effects of opioids, the construction of a hybrid with dual action at opioid and dopamine receptors is of interest. Herein, we present nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulation results for LENART01, an opioid-ranatensin hybrid peptide. Apart from molecular docking, protein-ligand interactions were also assessed in vitro using a receptor binding assay, which proved LENART01 to be bound to mu-opioid and dopamine receptors, respectively.
Collapse
Affiliation(s)
- Pawel Serafin
- Department of Military Health Service, Ministry of National Defence of the Republic of Poland, Niepodleglosci 211 Street, 00-911 Warsaw, Poland;
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-093 Warsaw, Poland; (Ł.S.); (D.M.P.)
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a Street, 02-106 Warsaw, Poland;
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (E.S.); (D.G.)
| | - Dávid Gombos
- Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (E.S.); (D.G.)
- Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Dugonics Square 13, H-6720 Szeged, Hungary
| | - Azzurra Stefanucci
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (A.M.)
| | - Adriano Mollica
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (A.M.)
| | - Dariusz Maciej Pisklak
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-093 Warsaw, Poland; (Ł.S.); (D.M.P.)
| | - Patrycja Kleczkowska
- Maria Sklodowska-Curie Medical Academy in Warsaw, Solidarnosci 12 Street, 03-411 Warsaw, Poland
| |
Collapse
|
5
|
Serafin P, Kowalczyk P, Mollica A, Stefanucci A, Laskowska AK, Zawadzka M, Kramkowski K, Kleczkowska P. Evaluation of Antimicrobial Activities against Various E. coli Strains of a Novel Hybrid Peptide-LENART01. Molecules 2023; 28:4955. [PMID: 37446618 DOI: 10.3390/molecules28134955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Finding the ideal antimicrobial drug with improved efficacy and a safety profile that eliminates antibiotic resistance caused by pathogens remains a difficult task. Indeed, there is an urgent need for innovation in the design and development of a microbial inhibitor. Given that many promising antimicrobial peptides with excellent broad-spectrum antibacterial properties are secreted by some frog species (e.g., bombesins, opioids, temporins, etc.), our goal was to identify the antimicrobial properties of amphibian-derived dermorphin and ranatensin peptides, which were combined to produce a hybrid compound. This new chimera (named LENART01) was tested for its antimicrobial activity against E. coli strains K12 and R1-R4, which are characterized by differences in lipopolysaccharide (LPS) core oligosaccharide structure. The results showed that LENART01 had superior activity against the R2 and R4 strains compared with the effects of the clinically available antibiotics ciprofloxacin or bleomycin (MIC values). Importantly, the inhibitory effect was not concentration dependent; however, LENART01 showed a time- and dose-dependent hemolytic effect in hemolytic assays.
Collapse
Affiliation(s)
- Pawel Serafin
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Adriano Mollica
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Azzurra Stefanucci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Anna K Laskowska
- Centre for Preclinical Research and Technology (CePT), Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Magdalena Zawadzka
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Department of Epidemiology and Public Health Lodz, Medical University of Lodz, 90-419 Lodz, Poland
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Patrycja Kleczkowska
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Maria Sklodowska-Curie Medical Academy in Warsaw, 03-411 Warsaw, Poland
| |
Collapse
|
6
|
Wang X, Yang X, Wang Q, Meng D. Unnatural amino acids: promising implications for the development of new antimicrobial peptides. Crit Rev Microbiol 2023; 49:231-255. [PMID: 35254957 DOI: 10.1080/1040841x.2022.2047008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The increasing incidence and rapid spread of bacterial resistance to conventional antibiotics are a serious global threat to public health, highlighting the need to develop new antimicrobial alternatives. Antimicrobial peptides (AMPs) represent a class of promising natural antibiotic candidates due to their broad-spectrum activity and low tendency to induce resistance. However, the development of AMPs for medical use is hampered by several obstacles, such as moderate activity, lability to proteolytic degradation, and low bioavailability. To date, many researchers have focussed on the optimization or design of novel artificial AMPs with desired properties. Unnatural amino acids (UAAs) are valuable building blocks in the manufacture of a variety of pharmaceuticals, and have been used to develop artificial AMPs with specific structural and physicochemical properties. Rational incorporation of UAAs has become a very promising approach to endow AMPs with strong and long-lasting activity but no toxicity. This review aims to summarize key approaches that have been used to incorporate UAAs to develop novel AMPs with improved properties and better performance. It is anticipated that this review will guide future design considerations for UAA-based antimicrobial applications.
Collapse
Affiliation(s)
- Xiuhong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Xiaomin Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Qiaoe Wang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China.,Tianjin Gasin-DH Preservation Technology Co., Ltd, Tianjin, People's Republic of China
| |
Collapse
|
7
|
Żyżyńska-Granica B, Mollica A, Stefanucci A, Granica S, Kleczkowska P. Comparative Study of Chemical Stability of a PK20 Opioid-Neurotensin Hybrid Peptide and Its Analogue [Ile 9]PK20-The Effect of Isomerism of a Single Amino Acid. Int J Mol Sci 2022; 23:ijms231810839. [PMID: 36142749 PMCID: PMC9500858 DOI: 10.3390/ijms231810839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Chemical stability is one of the main problems during the discovery and development of potent drugs. When ignored, it may lead to unreliable biological and pharmacokinetics data, especially regarding the degradation of products’ possible toxicity. Recently, two biologically active drug candidates were presented that combine both opioid and neurotensin pharmacophores in one entity, thus generating a hybrid compound. Importantly, these chimeras are structurally similar except for an amino acid change at position 9 of the peptide chain. In fact, isoleucine (C6H13NO2) was replaced with its isomer tert-leucine. These may further lead to various differences in hybrids’ behavior under specific conditions (temperature, UV, oxidative, acid/base environment). Therefore, the purpose of the study is to assess and compare the chemical stability of two hybrid peptides that differ in nature by way of one amino acid (tert-leucine vs. isoleucine). The obtained results indicate that, opposite to biological activity, the substitution of tert-leucine into isoleucine did not substantially influence the compound’s chemical stability. In fact, neither hydrolysis under alkaline and acidic conditions nor oxidative degradation resulted in spectacular differences between the two compounds—although the number of potential degradation products increased, particularly under acidic pH. However, such a modification significantly reduced the compound’s half-life from 204.4 h (for PK20 exposed to 1M HCl) to 117.7 h for [Ile9]PK20.
Collapse
Affiliation(s)
- Barbara Żyżyńska-Granica
- Chair and Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Adriano Mollica
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Azzurra Stefanucci
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Patrycja Kleczkowska
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Maria Sklodowska-Curie Medical Academy in Warsaw, 03-411 Warsaw, Poland
- Correspondence: ; Tel.: +48-690-888-774
| |
Collapse
|
8
|
Chimeric Structures in Mental Illnesses-"Magic" Molecules Specified for Complex Disorders. Int J Mol Sci 2022; 23:ijms23073739. [PMID: 35409098 PMCID: PMC8998808 DOI: 10.3390/ijms23073739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Mental health problems cover a wide spectrum of diseases, including mild to moderate anxiety, depression, alcohol/drug use disorders, as well as bipolar disorder and schizophrenia. Pharmacological treatment seems to be one of the most effective opportunities to recover function efficiently and satisfactorily. However, such disorders are complex as several target points are involved. This results in a necessity to combine different types of drugs to obtain the necessary therapeutic goals. There is a need to develop safer and more effective drugs. Considering that mental illnesses share multifactorial processes, the paradigm of one treatment with multiple modes of action rather than single-target strategies would be more effective for successful therapies. Therefore, hybrid molecules that combine two pharmacophores in one entity show promise, as they possess the desired therapeutic index with a small off-target risk. This review aims to provide information on chimeric structures designed for mental disorder therapy (i.e., schizophrenia and depression), and new types of drug candidates currently being tested. In addition, a discussion on some benefits and limitations of multifunctional, bivalent drug candidates is also given.
Collapse
|
9
|
Abstract
Introduction: Neurotensin is a gut-brain peptide hormone, a 13 amino acid neuropeptide found in the central nervous system and in the GI tract. The neurotensinergic system is implicated in various physiological and pathological processes related to neuropsychiatric and metabolic machineries, cancer growth, food, and drug intake. NT mediates its functions through its two G protein-coupled receptors: neurotensin receptor 1 (NTS1/NTSR1) and neurotensin receptor 2 (NTS2/NTSR2). Over the past decade, the role of NTS3/NTSR3/sortilin has also gained importance in human pathologies. Several approaches have appeared dealing with the discovery of compounds able to modulate the functions of this neuropeptide through its receptors for therapeutic gain.Areas covered: The article provides an overview of over four decades of research and details the drug discovery approaches and patented strategies targeting NTSR in the past decade.Expert opinion: Neurotensin is an important neurotransmitter that enables crosstalk with various neurotransmitter and neuroendocrine systems. While significant efforts have been made that have led to selective agonists and antagonists with promising in vitro and in vivo activities, the therapeutic potential of compounds targeting the neurotensinergic system is still to be fully harnessed for successful clinical translation of compounds for the treatment of several pathologies.
Collapse
Affiliation(s)
- Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
10
|
Multifunctional Opioid-Derived Hybrids in Neuropathic Pain: Preclinical Evidence, Ideas and Challenges. Molecules 2020; 25:molecules25235520. [PMID: 33255641 PMCID: PMC7728063 DOI: 10.3390/molecules25235520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
When the first- and second-line therapeutics used to treat neuropathic pain (NP) fail to induce efficient analgesia—which is estimated to relate to more than half of the patients—opioid drugs are prescribed. Still, the pathological changes following the nerve tissue injury, i.a. pronociceptive neuropeptide systems activation, oppose the analgesic effects of opiates, enforcing the use of relatively high therapeutic doses in order to obtain satisfying pain relief. In parallel, the repeated use of opioid agonists is associated with burdensome adverse effects due to compensatory mechanisms that arise thereafter. Rational design of hybrid drugs, in which opioid ligands are combined with other pharmacophores that block the antiopioid action of pronociceptive systems, delivers the opportunity to ameliorate the NP-oriented opioid treatment via addressing neuropathological mechanisms shared both by NP and repeated exposition to opioids. Therewith, the new dually acting drugs, tailored for the specificity of NP, can gain in efficacy under nerve injury conditions and have an improved safety profile as compared to selective opioid agonists. The current review presents the latest ideas on opioid-comprising hybrid drugs designed to treat painful neuropathy, with focus on their biological action, as well as limitations and challenges related to this therapeutic approach.
Collapse
|
11
|
Gonzalez S, Dumitrascuta M, Eiselt E, Louis S, Kunze L, Blasiol A, Vivancos M, Previti S, Dewolf E, Martin C, Tourwé D, Cavelier F, Gendron L, Sarret P, Spetea M, Ballet S. Optimized Opioid-Neurotensin Multitarget Peptides: From Design to Structure-Activity Relationship Studies. J Med Chem 2020; 63:12929-12941. [PMID: 32902268 PMCID: PMC7667639 DOI: 10.1021/acs.jmedchem.0c01376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 01/20/2023]
Abstract
Fusion of nonopioid pharmacophores, such as neurotensin, with opioid ligands represents an attractive approach for pain treatment. Herein, the μ-/δ-opioid agonist tetrapeptide H-Dmt-d-Arg-Aba-β-Ala-NH2 (KGOP01) was fused to NT(8-13) analogues. Since the NTS1 receptor has been linked to adverse effects, selective MOR-NTS2 ligands are preferred. Modifications were introduced within the native NT sequence, particularly a β3-homo amino acid in position 8 and Tyr11 substitutions. Combination of β3hArg and Dmt led to peptide 7, a MOR agonist, showing the highest NTS2 affinity described to date (Ki = 3 pM) and good NTS1 affinity (Ki = 4 nM), providing a >1300-fold NTS2 selectivity. The (6-OH)Tic-containing analogue 9 also exhibited high NTS2 affinity (Ki = 1.7 nM), with low NTS1 affinity (Ki = 4.7 μM), resulting in an excellent NTS2 selectivity (>2700). In mice, hybrid 7 produced significant and prolonged antinociception (up to 8 h), as compared to the KGOP01 opioid parent compound.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Disease Models, Animal
- Drug Design
- Humans
- Male
- Mice
- Oligopeptides/chemistry
- Oligopeptides/metabolism
- Oligopeptides/therapeutic use
- Pain/drug therapy
- Pain/pathology
- Peptides/chemistry
- Peptides/metabolism
- Peptides/therapeutic use
- Protein Binding
- Receptors, Neurotensin/chemistry
- Receptors, Neurotensin/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Simon Gonzalez
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Maria Dumitrascuta
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Emilie Eiselt
- Department
of Pharmacology and Physiology, Faculty of Medicine and Health Sciences,
Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, J1H 5N4 Sherbrooke, Canada
| | - Stevany Louis
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Linda Kunze
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Annalisa Blasiol
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Mélanie Vivancos
- Department
of Pharmacology and Physiology, Faculty of Medicine and Health Sciences,
Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, J1H 5N4 Sherbrooke, Canada
| | - Santo Previti
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Elke Dewolf
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Charlotte Martin
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Dirk Tourwé
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Florine Cavelier
- Institut
des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, 34095 Montpellier, France
| | - Louis Gendron
- Department
of Pharmacology and Physiology, Faculty of Medicine and Health Sciences,
Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, J1H 5N4 Sherbrooke, Canada
| | - Philippe Sarret
- Department
of Pharmacology and Physiology, Faculty of Medicine and Health Sciences,
Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, J1H 5N4 Sherbrooke, Canada
| | - Mariana Spetea
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Steven Ballet
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
12
|
Frączek K, Ferraiolo M, Hermans E, Bujalska-Zadrozny M, Kasarello K, Erdei A, Kulik K, Kowalczyk A, Wojciechowski P, Sulejczak D, Sosnowski P, Granica S, Benyhe S, Kaczynska K, Nagraba L, Stolarczyk A, Cudnoch-Jedrzejewska A, Kleczkowska P. Novel opioid-neurotensin-based hybrid peptide with spinal long-lasting antinociceptive activity and a propensity to delay tolerance development. Acta Pharm Sin B 2020; 10:1440-1452. [PMID: 32963942 PMCID: PMC7488486 DOI: 10.1016/j.apsb.2020.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/01/2020] [Accepted: 04/20/2020] [Indexed: 01/04/2023] Open
Abstract
The behavioral responses exerted by spinal administration of the opioid-neurotensin hybrid peptide, PK23, were studied in adult male rats. The antinociceptive effect upon exposure to a thermal stimulus, as well as tolerance development, was assessed in an acute pain model. The PK23 chimera at a dose of 10 nmol/rat produced a potent pain-relieving effect, especially after its intrathecal administration. Compared with intrathecal morphine, this novel compound was found to possess a favourable side effect profile characterized by a reduced scratch reflex, delayed development of analgesic tolerance or an absence of motor impairments when given in the same manner, though some animals died following barrel rotation as a result of its i.c.v. administration (in particular at doses higher than 10 nmol/rat). Nonetheless, these results suggest the potential use of hybrid compounds encompassing both opioid and neurotensin structural fragments in pain management. This highlights the enormous potential of synthetic neurotensin analogues as promising future analgesics.
Collapse
|
13
|
Pérez de Vega MJ, Ferrer-Montiel A, González-Muñiz R. Recent progress in non-opioid analgesic peptides. Arch Biochem Biophys 2018; 660:36-52. [DOI: 10.1016/j.abb.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023]
|
14
|
Abstract
Hybrid compounds (also known as chimeras, designed multiple ligands, bivalent compounds) are chemical units where two active components, usually possessing affinity and selectivity for distinct molecular targets, are combined as a single chemical entity. The rationale for using a chimeric approach is well documented as such novel drugs are characterized by their enhanced enzymatic stability and biological activity. This allows their use at lower concentrations, increasing their safety profile, particularly when considering undesirable side effects. In the group of synthetic bivalent compounds, drugs combining pharmacophores having affinities toward opioid and neurokinin-1 receptors have been extensively studied as potential analgesic drugs. Indeed, substance P is known as a major endogenous modulator of nociception both in the peripheral and central nervous systems. Hence, synthetic peptide fragments showing either agonism or antagonism at neurokinin 1 receptor were both assigned with analgesic properties. However, even though preclinical studies designated neurokinin-1 receptor antagonists as promising analgesics, early clinical studies revealed a lack of efficacy in human. Nevertheless, their molecular combination with enkephalin/endomorphin fragments has been considered as a valuable approach to design putatively promising ligands for the treatment of pain. This paper is aimed at summarizing a 20-year journey to the development of potent analgesic hybrid compounds involving an opioid pharmacophore and devoid of unwanted side effects. Additionally, the legitimacy of considering neurokinin-1 receptor ligands in the design of chimeric drugs is discussed.
Collapse
|
15
|
Zhang Y, Sun G, Hou Z, Yan B, Zhang J. Evaluation of the quality consistency of powdered poppy capsule extractive by an averagely linear-quantified fingerprint method in combination with antioxidant activities and two compounds analyses. J Sep Sci 2017; 40:4511-4520. [DOI: 10.1002/jssc.201700389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/24/2017] [Accepted: 09/20/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Yujing Zhang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang P. R. China
| | - Guoxiang Sun
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang P. R. China
| | - Zhifei Hou
- Department of Pharmaceutical engineering; Hebei Chemical and Pharmaceutical College; Shijiazhuang P. R. China
| | - Bo Yan
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang P. R. China
| | - Jing Zhang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang P. R. China
| |
Collapse
|
16
|
Rapacz A, Kamiński K, Obniska J, Koczurkiewicz P, Pękala E, Filipek B. Analgesic, antiallodynic, and anticonvulsant activity of novel hybrid molecules derived from N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide and 2-(2,5-dioxopyrrolidin-1-yl)butanamide in animal models of pain and epilepsy. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:567-579. [PMID: 28188357 PMCID: PMC5411412 DOI: 10.1007/s00210-017-1358-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/01/2017] [Indexed: 01/25/2023]
Abstract
The purpose of the present study was to examine the analgesic activity of six novel hybrid molecules, which demonstrated in the previous research anticonvulsant activity in the maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole seizure (scPTZ) tests in mice. The antinociceptive properties were estimated in three models of pain in mice—the hot plate test, the formalin test, and in the oxaliplatin-induced neuropathy. Moreover, extended anticonvulsant studies were carried out and the antiseizure activity was investigated in the 6-Hz test. Considering drug safety evaluation, the influence of compounds on locomotor activity and contextual memory were checked. Furthermore, chosen molecules were tested in vitro for potential hepatotoxicity. To explain the probable mechanism of action, the radioligand binding assays were performed. In both phases of formalin test, analgesic activity demonstrated compounds 4, 8, and 9. These agents relieved also mechanical allodynia in oxaliplatin-induced model of neuropathic pain. At active doses, they did not influence locomotor activity of mice. Moreover, for compounds 8 and 9, no deleterious effect on memory was observed, but compound 4 might induce memory deficits. All tested compounds (4, 5, 8, 9, 15, and 16) inhibited psychomotor seizures with the ED50 values = 24.66–47.21 mg/kg. The binding studies showed that compound 4 only at the high concentrations revealed the effective binding to the neuronal sodium channels and moderately binding to the L-type calcium (verapamil site) channels and NMDA receptors. The present preclinical results proved that novel hybrid molecules demonstrate very promising anticonvulsant and analgesic activity.
Collapse
Affiliation(s)
- Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Jolanta Obniska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| |
Collapse
|
17
|
Wang ZL, Pan JX, Song JJ, Tang HH, Yu HP, Li XH, Li N, Zhang T, Zhang R, Zhang MN, Xu B, Fang Q, Wang R. Structure-Based Optimization of Multifunctional Agonists for Opioid and Neuropeptide FF Receptors with Potent Nontolerance Forming Analgesic Activities. J Med Chem 2016; 59:10198-10208. [PMID: 27798836 DOI: 10.1021/acs.jmedchem.6b01181] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zi-Long Wang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Jia-Xin Pan
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Jing-Jing Song
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Hong-Hai Tang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Hong-Ping Yu
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Xu-Hui Li
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Ting Zhang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Meng-Na Zhang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Rui Wang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| |
Collapse
|