1
|
Smulders TV. Telencephalic regulation of the HPA axis in birds. Neurobiol Stress 2021; 15:100351. [PMID: 34189191 PMCID: PMC8220096 DOI: 10.1016/j.ynstr.2021.100351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis is one of the major output systems of the vertebrate stress response. It controls the release of cortisol or corticosterone from the adrenal gland. These hormones regulate a range of processes throughout the brain and body, with the main function of mobilizing energy reserves to improve coping with a stressful situation. This axis is regulated in response to both physical (e.g., osmotic) and psychological (e.g., social) stressors. In mammals, the telencephalon plays an important role in the regulation of the HPA axis response in particular to psychological stressors, with the amygdala and part of prefrontal cortex stimulating the stress response, and the hippocampus and another part of prefrontal cortex inhibiting the response to return it to baseline. Birds also mount HPA axis responses to psychological stressors, but much less is known about the telencephalic areas that control this response. This review summarizes which telencephalic areas in birds are connected to the HPA axis and are known to respond to stressful situations. The conclusion is that the telencephalic control of the HPA axis is probably an ancient system that dates from before the split between sauropsid and synapsid reptiles, but more research is needed into the functional relationships between the brain areas reviewed in birds if we want to understand the level of this conservation.
Collapse
Affiliation(s)
- Tom V. Smulders
- Centre for Behaviour & Evolution, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
2
|
Kang SW, Kidd MT, Kadhim HJ, Shouse S, Orlowski SK, Hiltz J, Anthony NB, Kuenzel WJ, Kong BC. Characterization of stress response involved in chicken myopathy. Gen Comp Endocrinol 2020; 295:113526. [PMID: 32540490 DOI: 10.1016/j.ygcen.2020.113526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Myopathies (Woody Breast (WB) and White Striping (WS)) of broiler chickens have been correlated with fast growth. Recent studies reported that localized hypoxia and metabolic impairment may involve in these myopathies of birds. In order to better understand the stress response mechanisms affecting myopathies of broilers, the aim of this study was to examine effects of WB and both WB/WS on stress hormone corticosterone (CORT) levels and expressional changes of stress response genes including glucocorticoid (GC) receptor (GR), 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1), DNA methylation regulators (DNMTs), and arginine vasotocin receptor 1a and 1b (V1aR, V1bR). Results of radioimmunoassay showed that CORT levels of WB and WB/WS birds were significantly higher compared to Con (p < 0.05), however, the combination of WB/WS was not significantly higher than WB birds, implying that the effects of WB and WS on CORT are not synergistic. Hepatic GR expression of both WB and WB/WS birds were significantly higher compared to Con (p < 0.05). However, GR expression levels in breast muscle of both WB and WB/WS birds were decreased compared to Con (p < 0.05). Hepatic 11β-HSD1 expression was increased only in WB/WS birds compared to Con birds with no significant difference between Con and WB birds. 11β-HSD1 expression was decreased and increased in WB and WB/WS birds compared to Con, respectively, in breast muscle (p < 0.05). DNMT1 expression was significantly decreased in both muscle and liver of WB birds, and in muscle of WB/WS birds, but not in liver of WB/WS birds, indicating differential effects of WS on the epigenetical stress response of muscle and liver compared to WB. V1aR expression was significantly increased in muscle of WB birds, and in liver of WB/WS birds compared to Con birds (p < 0.05). V1bR was not changed in muscle and liver of WB birds compared to Con birds. Taken together, results suggest that GC-induced myopathies occur in fast-growing broiler chickens and circulating CORT level might be a significant biochemical marker of myopathies (WB and WS) of birds. In addition, chronic stress responses in breast muscle and tissue-specific epigenetic changes of stress response genes by DNMTs may play a critical role in the occurrence of myopathies.
Collapse
Affiliation(s)
- Seong W Kang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States.
| | - Michael T Kidd
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Hakeem J Kadhim
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
| | - Stephanie Shouse
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Sara K Orlowski
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Joseph Hiltz
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Nickolas B Anthony
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Wayne J Kuenzel
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Byungwhi C Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| |
Collapse
|
3
|
Kadhim HJ, Kidd M, Kang SW, Kuenzel WJ. Differential delayed responses of arginine vasotocin and its receptors in septo-hypothalamic brain structures and anterior pituitary that sustain hypothalamic-pituitary-adrenal (HPA) axis functions during acute stress. Gen Comp Endocrinol 2020; 286:113302. [PMID: 31622604 DOI: 10.1016/j.ygcen.2019.113302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
Abstract
Recently, we proposed that corticotropin releasing hormone (CRH) neurons in the nucleus of hippocampal commissure (NHpC), located in the septum, function as a part of the traditional hypothalamic-pituitary-adrenal (HPA) axis in avian species. CRH and its receptor, CRHR1, are regulated differently in the NHpC compared to the paraventricular nucleus (PVN) following feed deprivation (FD). Therefore, we followed up our work by examining arginine vasotocin (AVT), the other major ACTH secretagogue, and its receptors, V1aR and V1bR, gene expression during FD stress in the NHpC, PVN, and ventral mediobasal hypothalamus/median eminence (MBHv/ME). The objectives were to 1) identify AVT perikarya, fibers and its two major receptors, V1aR and V1bR, in the NHpC, PVN, and MBHv/ME using immunohistochemistry, 2) determine the effect of stress on AVT, V1aR and V1bR mRNA expression in the same three brain structures, NHpC, PVN, and MBHv/ME; and, 3) ascertain the expression pattern of V1aR and V1bR mRNA in the anterior pituitary and measure plasma stress hormone, corticosterone (CORT), concentration following FD stress. Male chicks (Cobb 500), 14 days of age, were divided into six groups (10 birds/treatment) and subjected to different times of FD stress: (Control, 1 h, 2 h, 3 h, 4 h, and 8 h). For each bird, blood, brain, and anterior pituitary were sampled and frozen immediately. The NHpC, PVN, and MBHv/ME were micro-dissected for RT-PCR. Data were analyzed using one-way ANOVA followed by Tukey Kramer HSD test using a significance level of p < 0.05. Perikarya of AVT neurons were identified in the PVN but not in the NHpC nor MBHv/ME, and only V1aR-immunoreactivity (ir) was observed in the three structures, however, gene expression data for AVT and its two receptors were obtained in all structures. Both AVT and V1aR mRNA are expressed and increased significantly in the PVN following FD stress (p < 0.01). For the first time, V1bR mRNA was documented in the avian brain and specifically shown upregulated in the NHpC and PVN (p < 0.01) following stress. Additionally, delayed significant gene expression of AVT and its receptors in the PVN showed a positive feedback relationship responsible for maintaining CORT release. In contrast, a significant downregulation of AVT mRNA and upregulation of V1aR mRNA occurred in the NHpC (p < 0.01) during FD showing a negative feedback relationship between AVT and its receptors, V1aR and V1bR. Within the MBHv/ME and anterior pituitary, a gradual increase of AVT mRNA in PVN as well as MBHv/ME was associated with significant upregulation of V1bR (p < 0. 01) and downregulation of V1aR (p < 0.01) in both MBHv/ME and anterior pituitary indicating AVT regulates its receptors differentially to sustain CORT release and control overstimulation of the anterior pituitary during a stress response.
Collapse
Affiliation(s)
- Hakeem J Kadhim
- Center of Excellence in Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Michael Kidd
- Center of Excellence in Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Seong W Kang
- Center of Excellence in Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Wayne J Kuenzel
- Center of Excellence in Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
4
|
Kuenzel WJ, Kang SW, Jurkevich A. The vasotocinergic system and its role in the regulation of stress in birds. VITAMINS AND HORMONES 2019; 113:183-216. [PMID: 32138948 DOI: 10.1016/bs.vh.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The regulation of stress in birds includes a complex interaction of neural systems affecting the hypothalamic-pituitary-adrenal (HPA) axis. In addition to the hypothalamic paraventricular nucleus, a structure called the nucleus of the hippocampal commissure likewise affects the output of pituitary stress hormones and appears to be unique to avian species. Within the anterior pituitary, the avian V1a and V1b receptors were found in corticotropes. Based on our studies with central administration of hormones in the chicken, corticotropic releasing hormone (CRH) is a more potent ACTH secretagogue than arginine vasotocin (AVT). In contrast, when applied peripherally, AVT is more efficacious. Co-administration of AVT and CRH peripherally, resulted in a synergistic stimulation of corticosterone release. Data suggest receptor oligomerization as one possible mechanism. In birds, vasotocin receptors associated with stress responses include the V1a and V1b receptors. Three-dimensional, homology-based structural models of the avian V1aR were built to test agonists and antagonists for each receptor that were screened by molecular docking to map their binding sites on each receptor. Additionally, binding affinity values for each available peptide antagonist to the V1aR and V1bR were determined. An anterior pituitary primary culture system was developed to determine how effective each antagonist blocked the function of each receptor in culture when stimulated by a combination of AVT/CRH administration. Use of an antagonist in subsequent in vivo studies identified the V1aR in regulating food intake in birds. The V1aR was likewise found in circumventricular organs of the brain, suggesting a possible function in stress.
Collapse
Affiliation(s)
- Wayne J Kuenzel
- Poultry Science Center, University of Arkansas, Fayetteville, AR, United States.
| | - Seong W Kang
- Poultry Science Center, University of Arkansas, Fayetteville, AR, United States
| | - Alexander Jurkevich
- Molecular Cytology Research Core Facility, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Korzh V, Kondrychyn I. Origin and development of circumventricular organs in living vertebrate. Semin Cell Dev Biol 2019; 102:13-20. [PMID: 31706729 DOI: 10.1016/j.semcdb.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/17/2019] [Indexed: 01/22/2023]
Abstract
The circumventricular organs (CVOs) function by mediating chemical communication between blood and brain across the blood-brain barrier. Their origin and developmental mechanisms involved are not understood in enough detail due to a lack of molecular markers common for CVOs. These rather small and inconspicuous organs are found in close vicinity to the third and fourth brain ventricles suggestive of ancient evolutionary origin. Recently, an integrated approach based on analysis of CVOs development in the enhancer-trap transgenic zebrafish led to an idea that almost all of CVOs could be highlighted by GFP expression in this transgenic line. This in turn suggested that an enhancer along with a set of genes it regulates may illustrate the first common element of developmental regulation of CVOs. It seems to be related to a mechanism of suppression of the canonical Wnt/ β-catenin signaling that functions in development of fenestrated capillaries typical for CVOs. Based on that observation the common molecular elements of the putative developmental mechanism of CVOs will be discussed in this review.
Collapse
Affiliation(s)
- Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| | | |
Collapse
|
6
|
Differential and temporal expression of corticotropin releasing hormone and its receptors in the nucleus of the hippocampal commissure and paraventricular nucleus during the stress response in chickens (Gallus gallus). Brain Res 2019; 1714:1-7. [DOI: 10.1016/j.brainres.2019.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
|
7
|
Lema SC, Washburn EH, Crowley ME, Carvalho PG, Egelston JN, McCormick SD. Evidence for a role of arginine vasotocin receptors in the gill during salinity acclimation by a euryhaline teleost fish. Am J Physiol Regul Integr Comp Physiol 2019; 316:R735-R750. [PMID: 30916577 DOI: 10.1152/ajpregu.00328.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nonapeptide arginine vasotocin (AVT) regulates osmotic balance in teleost fishes, but its mechanisms of action are not fully understood. Recently, it was discovered that nonapeptide receptors in teleost fishes are differentiated into two V1a-type, several V2-type, and two isotocin (IT) receptors, but it remains unclear which receptors mediate AVT's effects on gill osmoregulation. Here, we examined the role of nonapeptide receptors in the gill of the euryhaline Amargosa pupfish (Cyprinodon nevadensis amargosae) during osmotic acclimation. Transcripts for the teleost V1a-type receptor v1a2 were upregulated over fourfold in gill 24 h after transferring pupfish from 7.5 ppt to seawater (35 ppt) or hypersaline (55 ppt) conditions and downregulated after transfer to freshwater (0.3 ppt). Gill transcripts for the nonapeptide degradation enzyme leucyl-cystinyl aminopeptidase (LNPEP) also increased in fish acclimating to 35 ppt. To test whether the effects of AVT on the gill might be mediated by a V1a-type receptor, we administered AVT or a V1-type receptor antagonist (Manning compound) intraperitoneally to pupfish before transfer to 0.4 ppt or 35 ppt. Pupfish transferred to 35 ppt exhibited elevated gill mRNA abundance for cystic fibrosis transmembrane conductance regulator (cftr), but that upregulation diminished under V1-receptor inhibition. AVT inhibited the increase in gill Na+/Cl- cotransporter 2 (ncc2) transcript abundance that occurs following transfer to hypoosmotic environments, whereas V1-type receptor antagonism increased ncc2 mRNAs even without a change in salinity. These findings indicate that AVT acts via a V1-type receptor to regulate gill Cl- transport by inhibiting Cl- uptake and facilitating Cl- secretion during seawater acclimation.
Collapse
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University , San Luis Obispo, California
| | - Elsie H Washburn
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University , San Luis Obispo, California
| | - Mary E Crowley
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University , San Luis Obispo, California
| | - Paul G Carvalho
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University , San Luis Obispo, California
| | - Jennifer N Egelston
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University , San Luis Obispo, California
| | - Stephen D McCormick
- United States Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, Turners Falls, Massachusetts
| |
Collapse
|
8
|
Kuenzel WJ. Mapping the brain of the chicken (Gallus gallus), with emphasis on the septal-hypothalamic region. Gen Comp Endocrinol 2018; 256:4-15. [PMID: 28923430 DOI: 10.1016/j.ygcen.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/14/2017] [Accepted: 09/13/2017] [Indexed: 01/28/2023]
Abstract
There has been remarkable progress in discoveries made in the avian brain, particularly over the past two decades. This review first highlights some of the discoveries made in the forebrain and credits the Avian Brain Nomenclature Forum, responsible for changing many of the terms found in the cerebrum and for stimulating collaborative research thereafter. The Forum facilitated communication among comparative neurobiologists by eliminating confusing and inaccurate names. The result over the past 15yearshas been a standardized use of avian forebrain terms. Nonetheless, additional changes are needed. The goal of the paper is to encourage a continuing effort to unify the nomenclature throughout the entire avian brain. To emphasize the need for consensus for a single name for each neural structure, I have selected specific structures in the septum and hypothalamus that our laboratory has been investigating, to demonstrate a lack of uniformity in names applied to conservative brain regions compared to the forebrain. The specific areas reviewed include the distributions of gonadotropin-releasing hormone neurons and their terminal fields in circumventricular organs, deep-brain photoreceptors, gonadotropin inhibitory neurons and a complex structure and function of the nucleus of the hippocampal commissure.
Collapse
Affiliation(s)
- Wayne J Kuenzel
- Poultry Science Center, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
9
|
Kang SW, Madkour M, Kuenzel WJ. Tissue-Specific Expression of DNA Methyltransferases Involved in Early-Life Nutritional Stress of Chicken, Gallus gallus. Front Genet 2017; 8:204. [PMID: 29270191 PMCID: PMC5723639 DOI: 10.3389/fgene.2017.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/22/2017] [Indexed: 12/15/2022] Open
Abstract
DNA methylation was reported as a possible stress-adaptation mechanism involved in the transcriptional regulation of stress responsive genes. Limited data are available on effects of psychological stress and early-life nutritional stress on DNA methylation regulators [DNMTs: DNA (cytosine-5)-methyltransferase 1 (DNMT1), DNMT1 associated protein (DMAP1), DNMT 3 alpha (DNMT3A) and beta (DNMT3B)] in avian species. The objectives of this study were to: (1) investigate changes in expression of DNMT1, DMAP1, DNMT3A, and DNMT3B following acute (AS) or chronic immobilization stress (CS); (2) test immediate effect of early-life nutritional stress [food deprivation (FD) for 12 h (12hFD) or 36 h (36hFD) at the post-hatching period] on expression of DNA methylation regulators and glucocorticoid receptor (GR), and the long-term effect of early-life nutritional stress at 6 weeks of age. Expression of DNMTs and plasma corticosterone (CORT) concentration decreased by CS compared to AS (p < 0.05), indicating differential roles of DNA methylation regulators in the stress response. Plasma CORT at 12hFD and 36hFD birds increased compared to control birds (12hF and 36hF), but there were no significant differences in plasma CORT of 12hFD and 36hFD birds at 6 weeks of age compared to 6 week controls. DNMT1, DMAP1, and DNMT3B expression in the anterior pituitary increased by 12hFD, but decreased at 36hFD compared to their controls (P < 0.05). In liver, DNMT1, DNMT3A, and DNMT3B expression decreased by 12hFD, however, no significant changes occurred at 36hFD. Expression of DMAP1, DNMT3A, and DNMT3B in anterior pituitary and DMAP1 and DNMT3A expression in liver at 6 weeks of age were higher in 36hFD stressed birds compared to controls as well as 12hFD stressed birds. Hepatic GR expression decreased by 12hFD and increased by 36hFD (p < 0.05). Expression patterns of GR in the liver of FD stress-induced birds persisted until 6 weeks of age, suggesting the possible lifelong involvement of liver GR in early-life nutritional stress response of birds. Taken together, results suggest that DNA methylation regulator genes are tissue-specifically responsive to acute and chronic stress, and hepatic GR may play a critical role in regulating the early-life nutritional stress response of birds. In addition, the downregulation of DNMT1 and DMAP1 may be one of the adaptive mechanisms to chronic early-life nutritional stress via passive demethylation.
Collapse
Affiliation(s)
- Seong W. Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, FayettevilleAR, United States
| | - Mahmoud Madkour
- Department of Animal Production, National Research CenterGiza, Egypt
| | - Wayne J. Kuenzel
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, FayettevilleAR, United States
| |
Collapse
|
10
|
Ahn JH, Park JH, Choi SY, Lee TK, Cho JH, Kim IH, Lee JC, Choi JH, Hwang IK, Lee E, Park S, Lim J, Lee YJ, Seo K, Won MH. The distribution of calbindinD-28k and parvalbumin immunoreactive neurons in the somatosensory area of the pigeon pallium. Anat Histol Embryol 2017; 47:64-70. [DOI: 10.1111/ahe.12325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 10/21/2017] [Indexed: 12/15/2022]
Affiliation(s)
- J. H. Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology; Hallym University; Chuncheon South Korea
| | - J. H. Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology; Hallym University; Chuncheon South Korea
| | - S. Y. Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology; Hallym University; Chuncheon South Korea
| | - T.-K. Lee
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| | - J. H. Cho
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| | - I. H. Kim
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| | - J.-C. Lee
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| | - J. H. Choi
- Department of Anatomy; College of Veterinary Medicine; Kangwon National University; Chuncheon South Korea
| | - I. K. Hwang
- Department of Anatomy and Cell Biology; College of Veterinary Medicine; Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - E. Lee
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - S. Park
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - J. Lim
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - Y. J. Lee
- Department of Emergency Medicine; Seoul Hospital; College of Medicine; Sooncheonhyang University; Seoul South Korea
| | - K. Seo
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - M.-H. Won
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| |
Collapse
|