1
|
Wu X, Liu J, Hui Y, Wu Z, Wang L, Wang Y, Bai Y, Li J, Zhang L, Xi Y, Zhang Q, Li L. Long-term intermittent theta burst stimulation enhanced hippocampus-dependent memory by regulating hippocampal theta oscillation and neurotransmitter levels in healthy rats. Neurochem Int 2024; 173:105671. [PMID: 38157888 DOI: 10.1016/j.neuint.2023.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Intermittent theta burst stimulation (iTBS), an updated pattern of high-frequency repetitive transcranial magnetic stimulation, is a potential candidate for improving memory. The hippocampus has been shown to be involved in the memory-enhancing effect induced by iTBS. However, it remains largely unknown whether this effect is achieved by regulating hippocampal theta oscillation and neurotransmitters gamma-aminobutyric acid (GABA) and glutamate, which are strongly related to memory. Thus, we investigated the effect of 14 days of iTBS on hippocampus-dependent memory and further explored the roles of hippocampal theta oscillation and neurotransmitters GABA and glutamate in this effect. We found that compared to sham iTBS, real iTBS enhanced hippocampus-dependent memory measured by hole-board test and object place recognition test. Further, real iTBS increased the density of c-Fos positive neurons and normalized power of theta oscillation in the dorsal hippocampus (dHip) compared to sham iTBS. Interestingly, we observed a decrease in the level of extracellular GABA and an increase in the level of extracellular glutamate in the dHip after real iTBS. Our results suggest that long-term iTBS improved hippocampus-dependent memory, which may be attributed to the enhancement of theta oscillation and altered levels of extracellular GABA and glutamate in the dHip.
Collapse
Affiliation(s)
- Xiang Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yanping Hui
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhongheng Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ling Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yixuan Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yihua Bai
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jing Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Lei Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yue Xi
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qiaojun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Libo Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
2
|
Hussain L, Masood I, Ahmad M, Ali MY, Saleem U, Hussain M, Khalid SH, Chauhdary Z. Pharmacological and toxicological evaluation of methyl 4-hydroxy-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxoide against haloperidol induced Parkinson like symptoms in animal model: In-vitro and in-vivo studies. Toxicol Appl Pharmacol 2023; 477:116678. [PMID: 37683697 DOI: 10.1016/j.taap.2023.116678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
In Parkinson's disease (PD), degradation of dopaminergic neurons in substantia nigra causes striatal deficiency of dopamine, which results in tremors, bradykinesia with instability in posture, rigidity and shuffled gait. Prevalence of PD increases with age as from 65 to 85 years. In an attempt to devise targeted safe therapy, nanoparticles of methyl 4-hydroxy-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide (MBD) (MBDN), were prepared and their acute toxicity and safety was evaluated. Thirty-six healthy albino mice were randomly divided into six groups (n = 6): normal control, diseased control, standard (levodopa/carbidopa (100/25 mg/kg) and the remaining three groups were administered 1.25, 2.5 and 5 mg/kg MBDN during 21 days study. Except control, all mice, were injected haloperidol (1 mg/ kg i.p.) 1-h prior to treatment to induce PD. Acute toxicity test showed, no effect of MBDN on lipid profile, brain, renal and liver function and histoarchitecture of kidney, liver and heart, except decreased (p < 0.05) platelet count. Behavioral studies showed significant improvement (p < 0.001) in motor function and reduction of oxidation status in a MBDN in a dose dependent manner. Thus, the study findings revealed significance of MBDN as a selective MAO-B inhibitor for the improvement of Parkinson's symptoms in animal model.
Collapse
Affiliation(s)
- Liaqat Hussain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan.
| | - Ina Masood
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Yasir Ali
- Department of Pharmaceutics, Faculty of Pharmaceutical sciences, Government College University Faisalabad, Pakistan
| | - Uzma Saleem
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Musaddique Hussain
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical sciences, Government College University Faisalabad, Pakistan
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| |
Collapse
|
3
|
The 5-HT6R agonist E-6837 and the antagonist SB-271046 reverse the psychotic-like behaviors induced by ketamine. Behav Pharmacol 2022; 33:249-254. [DOI: 10.1097/fbp.0000000000000669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Oliver BL, Pahua AE, Hitchcock K, Amodeo DA. Serotonin 6 receptor modulation reduces locomotor activity in C57BL/6J mice. Brain Res 2021; 1757:147313. [PMID: 33548271 DOI: 10.1016/j.brainres.2021.147313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 11/23/2022]
Abstract
The serotonin 6 receptor (5-HT6) is a more recently identified therapeutic target for several neuropsychiatric disorders. While the 5-HT6 receptor has gained interest as a target for novel therapeutics, determining the basic sex differences is lacking in the literature. To address this, the present study examined the effects of 5-HT6 receptor modulation on locomotor activity and open field measures of anxiety in C57BL/6J mice. Female and male mice were tested after acute treatment with either 5-HT6 receptor antagonist SB 271046 or 5-HT6 receptor agonist EMD 386088. Acute 5-HT6 receptor blockade with SB 271046 attenuated locomotor activity in C57BL6/J mice, irrespective of sex. When locomotor activity was analyzed for six 10 min time blocks, 0.1, 5, or 15 mg/kg of SB 271046 reduced locomotor activity for the initial 40 min of testing, but only 5 and 15 mg/kg SB 271046 exhibited a reduction in locomotor activity for at least 60 min. EMD 386088 only attenuated locomotor activity when mice were treated with the high dose of 15 mg/kg EMD 386088. This was true for all time blocks except for the 40-50 min time block. In addition, EMD 386088 at the 15 mg/kg dose reduced locomotor activity in female mice more than males during the 20-30 and 30-40 minute time blocks. Analysis of the anxiolytic properties of 5-HT6 receptor modulation via the open field, showed that SB 271046 did not demonstrate anxiogenic properties in either sex at the doses tested. Instead, 15 mg/kg EMD 386088 produced an anxiogenic effect in both female and male mice. Together these findings highlight the differing impact of specific 5-HT6 receptor modulation on locomotor activity in C57BL/6J mice.
Collapse
Affiliation(s)
- Brandon L Oliver
- California State University San Bernardino, Department of Psychology, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Alma E Pahua
- California State University San Bernardino, Department of Psychology, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Kristianna Hitchcock
- California State University San Bernardino, Department of Psychology, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Dionisio A Amodeo
- California State University San Bernardino, Department of Psychology, 5500 University Parkway, San Bernardino, CA, 92407, USA.
| |
Collapse
|
5
|
Wang JW, Gao F, Wang ZL, Wang XC, Yang J, Ma BR, Wang HS, Xie W, Guo Y, Zhang L. Activation and blockade of dorsal hippocampal serotonin4 receptors produce antidepressant effects in the hemiparkinsonian rats. Brain Res 2021; 1761:147426. [PMID: 33737063 DOI: 10.1016/j.brainres.2021.147426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/05/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Depression is a common non-motor symptom in Parkinson's disease (PD). Although serotonin4 (5-HT4) receptors and the dorsal hippocampus (dHIP) are regarded to be involved in the depression, the mechanism underlying the effects of 5-HT4 receptors in the dHIP on PD-related depression should be further investigated. In the present study, unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB) increased the expressions of 5-HT4 receptors and its co-localization with glutamate neurons in the CA1, CA3 and dentate gyrus. Additionally, MFB lesions induced depressive-like behaviors in the sucrose preference and forced swimming tests. The activation or blockade of dHIP 5-HT4 receptors produced antidepressant effects in the MFB lesioned rats but not in control rats. Neurochemical results showed no changes of monoamines levels in the striatum, medial prefrontal cortex (mPFC), lateral habenula (LHb), and ventral hippocampus (vHIP) in control rats after intra-dHIP injection of 5-HT4 receptors agonist BIMU8 (26 μg/rat), antagonist GR 113808 (16 μg/rat) or GR 113808/BIMU8 (26 μg/16 μg/rat). But in the lesioned rats, BIMU8, GR113808 or GR 113808/BIMU8 injection increased dopamine levels in the striatum, mPFC, LHb, and vHIP and increased 5-HT levels in the LHb. Intra-dHIP injection of GR 113808 or GR 113808/BIMU8 also increased the noradrenaline levels in the mPFC and LHb. All these results suggest that activation or blockade dHIP 5-HT4 receptors produce antidepressant effects in the hemiparkinsonian rats, which may be related to the upregulation of 5-HT4 receptors in the dHIP and the changes of monoamines in the limbic and limbic-related brain regions.
Collapse
Affiliation(s)
- Jia-Wei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Feng Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Zhao-Long Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao-Chen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Bo-Rui Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Hui-Sheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; The Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an 710061, China
| | - Wen Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; The Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; The Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an 710061, China.
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; The Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an 710061, China.
| |
Collapse
|
6
|
Amodeo DA, Oliver B, Pahua A, Hitchcock K, Bykowski A, Tice D, Musleh A, Ryan BC. Serotonin 6 receptor blockade reduces repetitive behavior in the BTBR mouse model of autism spectrum disorder. Pharmacol Biochem Behav 2021; 200:173076. [DOI: 10.1016/j.pbb.2020.173076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022]
|
7
|
Activation and blockade of 5-HT 6 receptor in the medial septum-diagonal band recover working memory in the hemiparkinsonian rats. Brain Res 2020; 1748:147072. [PMID: 32853642 DOI: 10.1016/j.brainres.2020.147072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023]
Abstract
Working memory impairment is a common symptom occurred in Parkinson's disease (PD). The medial septum-diagonal band (MS-DB) complex and 5-HT6 receptor are involved in modulation of cognition. However, their roles in working memory in PD are still unknown. Here, we used behavioral, neurochemical and immunohistochemical approaches to assess the role of MS-DB 5-HT6 receptor in working memory in unilateral 6-hydroxydopamie (6-OHDA)-induced PD rats. Intra-MS-DB injection of 5-HT6 receptor agonist WAY208466 (3, 6 and 12 μg/rat) enhanced working memory and increased dopamine (DA) and noradrenaline (NA) levels in the medial prefrontal cortex (mPFC) and hippocampus in sham and 6-OHDA-lesioned rats. The dose that produced significant effect on working memory in 6-OHDA-lesioned rats was lower than that in sham rats, indicating hypersensitivity of 5-HT6 receptor after lesioning. Intra-MS-DB injection of 5-HT6 receptor antagonist SB258585 (2, 4 and 8 μg/rat) alleviated working memory deficits and increased DA level in the mPFC and hippocampus and NA level in the mPFC in 6-OHDA-lesioned rats while having no effect in sham rats, suggesting that SB258585 did not change normal cognitive status. These results suggest that activation and blockade of MS-DB 5-HT6 receptor recovered working memory in 6-OHDA-lesioned rats, which is probably related to changes in monoamine levels in the mPFC and hippocampus.
Collapse
|
8
|
Transcriptomic profiling of differentially expressed genes and related pathways in different brain regions in Parkinson’s disease. Neurosci Lett 2020; 732:135074. [DOI: 10.1016/j.neulet.2020.135074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
|
9
|
Liu Y, Liu J, Jiao SR, Liu X, Guo Y, Zhang J, Yang J, Xie W, Wang HS, Zhang L. Serotonin1A receptors in the dorsal hippocampus regulate working memory and long-term habituation in the hemiparkinsonian rats. Behav Brain Res 2019; 376:112207. [DOI: 10.1016/j.bbr.2019.112207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022]
|
10
|
Zhang YX, Yang M, Liang F, Li SQ, Yang JS, Huo FQ, Yan CX. The pronociceptive role of 5-HT 6 receptors in ventrolateral orbital cortex in a rat formalin test model. Neurochem Int 2019; 131:104562. [PMID: 31580911 DOI: 10.1016/j.neuint.2019.104562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 01/23/2023]
Abstract
Recent studies have shown the 5-HT6 receptors are expressed in regions which are important in pain processing such as the cortex, amygdala, thalamus, PAG, spinal cord and dorsal root ganglia (DRG), suggesting a putative role of 5-HT6 receptors in pain modulation. The ventrolateral orbital cortex (VLO) is part of an endogenous analgesic system, consisting of the spinal cord - thalamic nucleus submedius (Sm) - VLO - periaqueductal gray (PAG) - spinal cord loop. The present study assessed the possible role of 5-HT6 receptors in the VLO in formalin-induced inflammatory pain model. Firstly we found that microinjection of selective 5-HT6 receptor agonists EMD-386088 (5 μg in 0.5 μl) and WAY-208466 (8 μg in 0.5 μl) both augmented 5% formalin-induced nociceptive behavior. Microinjection of selective 5-HT6 receptor antagonist SB-258585 (1,2 and 4 μg in 0.5 μl) significantly reduced formalin-induced flinching. Besides, the pronociceptive effects of EMD-386088 and WAY-208466 were dramatically reduced by SB-258585, implicating 5-HT6 receptor mechanisms in mediating these responses. In addition, the pronociceptive effect of EMD-386088 was also prevented by the adenylate cyclase (AC) inhibitor SQ-22536 (2 nmol in 0.5 μl) and the protein kinase A (PKA) inhibitor H89 (10 nmol in 0.5 μl), respectively. We further confirmed the above results with quantification of spinal c-fos expression. Taken together, our results suggested that 5-HT6 receptors play a pronociceptive role in the VLO in the rat formalin test due to its activation of AC - PKA pathway. Therefore, cerebral cortical 5-HT6 receptors could be a new target to develop analgesic drugs.
Collapse
Affiliation(s)
- Yu-Xiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Mei Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Feng Liang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Shao-Qing Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Jing-Si Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Fu-Quan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Chun-Xia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China.
| |
Collapse
|
11
|
de Assis Brasil ES, Guerino Furini CR, da Silva Rodrigues F, Nachtigall EG, Kielbovicz Behling JA, Saenger BF, Farias CP, de Carvalho Myskiw J, Izquierdo I. The blockade of the serotoninergic receptors 5-HT5A, 5-HT6 and 5-HT7 in the basolateral amygdala, but not in the hippocampus facilitate the extinction of fear memory. Behav Brain Res 2019; 372:112055. [DOI: 10.1016/j.bbr.2019.112055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/27/2019] [Accepted: 06/20/2019] [Indexed: 01/20/2023]
|
12
|
Jiang C, Zou X, Zhu R, Shi Y, Wu Z, Zhao F, Chen L. The correlation between accumulation of amyloid beta with enhanced neuroinflammation and cognitive impairment after intraventricular hemorrhage. J Neurosurg 2019; 131:54-63. [PMID: 30028260 DOI: 10.3171/2018.1.jns172938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Intraventricular hemorrhage (IVH) is found in approximately 40% of intracerebral hemorrhages and is associated with increased mortality and poor functional outcome. Cognitive impairment is one of the complications and occurs due to various pathological changes. Amyloid beta (Aβ) accumulation and neuroinflammation, and the Alzheimer disease-like pathology, may contribute to cognitive impairment. Iron, the degradation product of hemoglobin, correlates with Aβ. In this study, the authors investigated the correlation between Aβ accumulation with enhanced neuroinflammation and cognitive impairment in a rat model of IVH. METHODS Nine male Sprague-Dawley rats underwent an intraventricular injection of autologous blood. Another 9 rats served as controls. Cognitive function was assessed by the Morris water maze and T-maze rewarded alternation tests. Biomarkers of Aβ accumulation, neuroinflammation, and c-Jun N-terminal kinase (JNK) activation were examined. RESULTS Cognitive function was impaired in the autologous blood injection group compared with the control group. In the blood injection group, Aβ accumulation was observed, with a co-located correlation between iron storage protein ferritin and Aβ. Beta-site amyloid precursor protein cleaving enzyme-1 (BACE1) activity was elevated. Microgliosis and astrogliosis were observed in hippocampal CA1, CA2, CA3, and dentate gyrus areas, with elevated proinflammatory cytokines tumor necrosis factor-α and interleukin-1. Protein levels of phosphorylated JNK were increased after blood injection. CONCLUSIONS Aβ accumulation and enhanced neuroinflammation have a role in cognitive impairment after IVH. A potential therapeutic method requires further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liang Chen
- 1Department of Neurosurgery and
- 2National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Intrahippocampal administration of 5-HT6 receptor drugs on memory consolidation and amnesia protocols. Behav Brain Res 2019; 359:378-385. [DOI: 10.1016/j.bbr.2018.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022]
|
14
|
Leffa DT, Pandolfo P, Gonçalves N, Machado NJ, de Souza CM, Real JI, Silva AC, Silva HB, Köfalvi A, Cunha RA, Ferreira SG. Adenosine A 2A Receptors in the Rat Prelimbic Medial Prefrontal Cortex Control Delay-Based Cost-Benefit Decision Making. Front Mol Neurosci 2018; 11:475. [PMID: 30618621 PMCID: PMC6306464 DOI: 10.3389/fnmol.2018.00475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022] Open
Abstract
Adenosine A2A receptors (A2ARs) were recently described to control synaptic plasticity and network activity in the prefrontal cortex (PFC). We now probed the role of these PFC A2AR by evaluating the behavioral performance (locomotor activity, anxiety-related behavior, cost-benefit decision making and working memory) of rats upon downregulation of A2AR selectively in the prelimbic medial PFC (PLmPFC) via viral small hairpin RNA targeting the A2AR (shA2AR). The most evident alteration observed in shA2AR-treated rats, when compared to sh-control (shCTRL)-treated rats, was a decrease in the choice of the large reward upon an imposed delay of 15 s assessed in a T-maze-based cost-benefit decision-making paradigm, suggestive of impulsive decision making. Spontaneous locomotion in the open field was not altered, suggesting no changes in exploratory behavior. Furthermore, rats treated with shA2AR in the PLmPFC also displayed a tendency for higher anxiety levels in the elevated plus maze (less entries in the open arms), but not in the open field test (time spent in the center was not affected). Finally, working memory performance was not significantly altered, as revealed by the spontaneous alternation in the Y-maze test and the latency to reach the platform in the repeated trial Morris water maze. These findings constitute the first direct demonstration of a role of PFC A2AR in the control of behavior in physiological conditions, showing their major contribution for the control of delay-based cost-benefit decisions.
Collapse
Affiliation(s)
- Douglas T Leffa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pablo Pandolfo
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Neurobiology, Fluminense Federal University, Niterói, Brazil
| | - Nélio Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Nuno J Machado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carolina M de Souza
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Post-Graduate Program in Medical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Joana I Real
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - António C Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Attila Köfalvi
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Samira G Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
15
|
5-HT6 receptor agonist EMD386088 impairs behavioral flexibility and working memory. Behav Brain Res 2018; 349:8-15. [DOI: 10.1016/j.bbr.2018.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
|
16
|
Du CX, Liu J, Guo Y, Zhang L, Zhang QJ. Lesions of the lateral habenula improve working memory performance in hemiparkinsonian rats. Neurosci Lett 2017; 662:162-166. [PMID: 29054431 DOI: 10.1016/j.neulet.2017.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 11/19/2022]
Abstract
The lateral habenula (LHb) is an important structure involved in various brain functions, because it controls the activity of dopaminergic and serotonergic systems in the midbrain. The impairment of working memory commonly occurs in Parkinson's disease; however, it is not clear whether the LHb involves in the regulation of working memory in rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB). In this study, we found that the MFB lesions in rats decreased choice accuracy as measured by the T-maze rewarded alternation test compared to control rats, indicating the induction of working memory impairment, and decreased dopamine (DA) levels in the medial prefrontal cortex (mPFC), hippocampus and amygdala. Further, rats in the MFB and LHb lesion group showed increased choice accuracy compared to rats in the MFB lesion group, indicating the enhancement of working memory after lesioning the LHb. Neurochemical results found that lesions of the LHb increased DA levels in the mPFC, hippocampus and amygdala in the MFB and LHb lesion group, as well as serotonin (5-HT) level in the mPFC. These findings suggest that DA depletion plays a key role in working memory impairment, and lesions of the LHb improve working memory in the MFB-lesioned rats, which involves in increases in the levels of DA and 5-HT in the mPFC, hippocampus and amygdala. Additionally, the present results may have implications for improving our understanding of the neuropathology and/or treatment of PD.
Collapse
Affiliation(s)
- Cheng Xue Du
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Qiao Jun Zhang
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
17
|
Wu ZH, Zhang QJ, Du CX, Xi Y, Li WJ, Guo FY, Yu SQ, Yang YX, Liu J. Prelimbic α1-adrenoceptors are involved in the regulation of depressive-like behaviors in the hemiparkinsonian rats. Brain Res Bull 2017; 134:99-108. [DOI: 10.1016/j.brainresbull.2017.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 01/21/2023]
|
18
|
Frameworking memory and serotonergic markers. Rev Neurosci 2017; 28:455-497. [DOI: 10.1515/revneuro-2016-0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022]
Abstract
Abstract:The evidence for neural markers and memory is continuously being revised, and as evidence continues to accumulate, herein, we frame earlier and new evidence. Hence, in this work, the aim is to provide an appropriate conceptual framework of serotonergic markers associated with neural activity and memory. Serotonin (5-hydroxytryptamine [5-HT]) has multiple pharmacological tools, well-characterized downstream signaling in mammals’ species, and established 5-HT neural markers showing new insights about memory functions and dysfunctions, including receptors (5-HT1A/1B/1D, 5-HT2A/2B/2C, and 5-HT3-7), transporter (serotonin transporter [SERT]) and volume transmission present in brain areas involved in memory. Bidirectional influence occurs between 5-HT markers and memory/amnesia. A growing number of researchers report that memory, amnesia, or forgetting modifies neural markers. Diverse approaches support the translatability of using neural markers and cerebral functions/dysfunctions, including memory formation and amnesia. At least, 5-HT1A, 5-HT4, 5-HT6, and 5-HT7receptors and SERT seem to be useful neural markers and therapeutic targets. Hence, several mechanisms cooperate to achieve synaptic plasticity or memory, including changes in the expression of neurotransmitter receptors and transporters.
Collapse
|