1
|
Zhong Z, Sun MM, He M, Huang HP, Hu GY, Ma SQ, Zheng HZ, Li MY, Yao L, Cong DY, Wang HF. Proteomics and its application in the research of acupuncture: An updated review. Heliyon 2024; 10:e33233. [PMID: 39022010 PMCID: PMC11253069 DOI: 10.1016/j.heliyon.2024.e33233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/06/2023] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
As a complementary and alternative therapy, acupuncture is widely used in the prevention and treatment of various diseases. However, the understanding of the mechanism of acupuncture effects is still limited due to the lack of systematic biological validation. Notably, proteomics technologies in the field of acupuncture are rapidly evolving, and these advances are greatly contributing to the research of acupuncture. In this study, we review the progress of proteomics research in analyzing the molecular mechanisms of acupuncture for neurological disorders, pain, circulatory disorders, digestive disorders, and other diseases, with an in-depth discussion around acupoint prescription and acupuncture manipulation modalities. The study found that proteomics has great potential in understanding the mechanisms of acupuncture. This study will help explore the mechanisms of acupuncture from a proteomic perspective and provide information to support future clinical decisions.
Collapse
Affiliation(s)
- Zhen Zhong
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Meng-Meng Sun
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Min He
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Hai-Peng Huang
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Guan-Yu Hu
- The Third Affiliated Hospital of Southern Medical University, No.183, West of Zhongshan Avenue, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Shi-Qi Ma
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Hai-Zhu Zheng
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Meng-Yuan Li
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Lin Yao
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - De-Yu Cong
- Department of Tuina, Traditional Chinese Medicine Hospital of Jilin Province, 130000, Changchun, China
| | - Hong-Feng Wang
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| |
Collapse
|
2
|
Li M, Wang K, Su W, Jia J, Wang X. The modulatory effect of 100 Hz electroacupuncture on striatal synaptic plasticity in unilateral lesioned 6-OHDA rats. Brain Res Bull 2022; 186:123-135. [PMID: 35697152 DOI: 10.1016/j.brainresbull.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022]
Abstract
Recent studied have reported that impaired striatal synaptic plasticity played a crucial role in Parkinson's disease (PD). Previous studies have suggested that electroacupuncture (EA) alleviated the motor deficits in PD patients and animal models. However, the mechanisms underlying this protection need to be further elucidated. In this study, we found that EA-induced improvement of motor deficits in the 6-hydroxydopamine (6-OHDA) rat model doesn't act through dopaminergic system. EA rescued the decreased striatal long-term potentiation (LTP) in 6-OHDA rats. In addition, the declined expression of N-methyl-D-aspartic acid receptor subunit 2B (NR2B) in the striatum was remarkably up-regulated by EA. The EA-induced improvement of LTP can be eliminated by NR2B-selective inhibitor. It is indicated that EA-induced recovery of striatal LTP was correlated with the up-regulation of NR2B subunit. EA was also found to rescue the decreased dendritic arborization and the spine density in the striatum of 6-OHDA rats. Meanwhile, EA suppressed striatal glutamate content and vesicular glutamate transporter 1 which is expressed in cortico-striatal glutamatergic projections. The decrease of striatal glutamate content induced by decortication, EA treatment or a combination of both reversed the loss of striatal spine density in 6-OHDA rats. It is indicated that EA-induced reduction of cortico-striatal glutamate transmission contributes to the recovery of striatal spine density. In conclusion, the therapeutic effect of EA on the motor deficits of 6-OHDA rats was mediated by rescuing cortico-striatal glutamate transmission and striatal synaptic plasticity.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ke Wang
- Beijing Institute for Brain Disorders, Beijing 100069, China; Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University, Beijing 100069, China
| | - Wenting Su
- Beijing Institute for Brain Disorders, Beijing 100069, China; Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University, Beijing 100069, China
| | - Jun Jia
- Beijing Institute for Brain Disorders, Beijing 100069, China; Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University, Beijing 100069, China.
| | - Xiaomin Wang
- Beijing Institute for Brain Disorders, Beijing 100069, China; Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Chen J, Xu J, Huang P, Luo Y, Shi Y, Ma P. The potential applications of traditional Chinese medicine in Parkinson's disease: A new opportunity. Biomed Pharmacother 2022; 149:112866. [PMID: 35367767 DOI: 10.1016/j.biopha.2022.112866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease (PD) presents a common challenge for people all over the world and has become a major research hotspot due to the large population affected by the illness and the difficulty of clinical treatment. The prevalence of PD is increasing every year, the pathogenesis is complex, and the current treatment is ineffective. Therefore, it has become imperative to find effective drugs for PD. With the advantages of low cost, high safety and high biological activity, Chinese medicine has great advantages in the prevention and treatment of PD. This review systematically summarizes the potential of Chinese medicine for the treatment of PD, showing that Chinese medicine can exert anti-PD effects through various pathways, such as anti-inflammatory and antioxidant pathways, reducing mitochondrial dysfunction, inhibiting endoplasmic reticulum stress and iron death, and regulating intestinal flora. These mainly involve HMGB1/TLR4, PI3K/Akt, NLRP3/ caspase-1/IL-1β, Nrf2/HO-1, SIRT1/Akt1, PINK1/parkin, Bcl-2/Bax, BDNF-TrkB and other signaling pathways. In sum, based on modern phytochemistry, pharmacology and genomic proteomics, Chinese medicine is likely to be a potential candidate for PD treatment, which requires more clinical trials to further elucidate its importance in the treatment of PD.
Collapse
Affiliation(s)
- Jiaxue Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingke Xu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Huang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yining Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuanshu Shi
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Cousineau J, Plateau V, Baufreton J, Le Bon-Jégo M. Dopaminergic modulation of primary motor cortex: From cellular and synaptic mechanisms underlying motor learning to cognitive symptoms in Parkinson's disease. Neurobiol Dis 2022; 167:105674. [PMID: 35245676 DOI: 10.1016/j.nbd.2022.105674] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The primary motor cortex (M1) is crucial for movement execution, especially dexterous ones, but also for cognitive functions like motor learning. The acquisition of motor skills to execute dexterous movements requires dopamine-dependent and -independent plasticity mechanisms within M1. In addition to the basal ganglia, M1 is disturbed in Parkinson's disease (PD). However, little is known about how the lack of dopamine (DA), characteristic of PD, directly or indirectly impacts M1 circuitry. Here we review data from studies of PD patients and the substantial research in non-human primate and rodent models of DA depletion. These models enable us to understand the importance of DA in M1 physiology at the behavioral, network, cellular, and synaptic levels. We first summarize M1 functions and neuronal populations in mammals. We then look at the origin of M1 DA and the cellular location of its receptors and explore the impact of DA loss on M1 physiology, motor, and executive functions. Finally, we discuss how PD treatments impact M1 functions.
Collapse
|
5
|
Yu J, Min D, Bai Y, Qu L, Zou T, Wang S. Electroacupuncture alleviates Parkinson disease and regulates the expression of brain-gut peptides. Exp Anim 2020; 69:448-460. [PMID: 32669479 PMCID: PMC7677085 DOI: 10.1538/expanim.19-0153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/15/2020] [Indexed: 12/25/2022] Open
Abstract
The non-motor symptoms (NMS) of Parkinson's disease (PD) are found in more than 90% of patients with PD. Here, we explored the effects of electroacupuncture (EA) stimulation at Zhong wan (CV-12), Qihai (RN-7), Zusanli (ST-36) and Taichong (LR-3) on NMS and brain-gut peptides of PD. We found that EA intervention alleviated the motor deficit induced by 6-OHDA in rats indicated by the decreased abnormal involuntary movements (AIMs) scores and the net number of rotations and increased cylinder test grade. It also improved the spatial memory and attenuated anxiety-like and depression of PD model rats. EA treatment significantly inhibited neuronal apoptosis in PD model animals, as demonstrated by the increased number of TH positive cells and reduced number of apoptotic cells in the substantia nigra. The expression of cleaved caspase-3 and cleaved PARP in PD model rats was markedly suppressed by EA stimulation. Moreover, EA remarkably inhibited the inflammatory response in PD model rats, as revealed by the decreased levels of TNF-α, IL-1β, and COX-2 mRNA expression. It also attenuated the oxidative stress in rats, as indicated by the increased levels of SOD and GSH and the decreased level of MDA. EA treatment contributed to alleviating PD by regulating brain-gut peptides in rats, such as NPY, CCK, SST, GAS, and PYY. In conclusion, EA stimulation at CV-12, RN-7, ST-36, and LR-3 effectively alleviates the NMS of PD partly through regulating the levels of brain-gut peptides.
Collapse
Affiliation(s)
- Jianjun Yu
- Department of Massage, Heilongjiang Academy of Chinese Medical Sciences, 72-78 Xiang'an Street, Harbin 150036, People's Republic of China
| | - Dongmei Min
- Department of Rehabilitation Medicine, Heilongjiang Provincial Hospital, No. 82 Zhongshan Road, Xiangfang District, Harbin 150036, People's Republic of China
| | - Yan Bai
- Department of Acupuncture, Heilongjiang Academy of Chinese Medical Sciences, 72-78 Xiang'an Street, Harbin 150036, People's Republic of China
| | - Long Qu
- Department of Massage, Heilongjiang Academy of Chinese Medical Sciences, 72-78 Xiang'an Street, Harbin 150036, People's Republic of China
| | - Tianyu Zou
- Department of Acupuncture, Heilongjiang Academy of Chinese Medical Sciences, 72-78 Xiang'an Street, Harbin 150036, People's Republic of China
| | - Shun Wang
- Department of Acupuncture, Heilongjiang Academy of Chinese Medical Sciences, 72-78 Xiang'an Street, Harbin 150036, People's Republic of China
| |
Collapse
|
6
|
Huang J, Qin X, Cai X, Huang Y. Effectiveness of Acupuncture in the Treatment of Parkinson's Disease: An Overview of Systematic Reviews. Front Neurol 2020; 11:917. [PMID: 32973668 PMCID: PMC7482669 DOI: 10.3389/fneur.2020.00917] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Background: The effects of acupuncture on Parkinson's disease (PD) outcomes remain unclear. The aim of this overview was to comprehensively evaluate the methodological quality and applicability of the results of systematic reviews (SRs)/meta-analyses (MAs) that examined the use of acupuncture to treat PD. Methods: Eight databases were searched to retrieve SRs/MAs on the use of acupuncture for the treatment of PD. Two reviewers independently screened and extracted the data using the Assessing the Methodological Quality of Systematic Reviews 2 (AMSTAR-2) checklist to evaluate the methodological quality and using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria to assess the evidence quality of the included reviews. Results: A total of 11 SRs/MAs were included. According to the AMSTAR-2 checklist results, all included SRs/MAs were rated as very-low-quality studies. The GRADE criteria revealed 20 studies with very-low-quality evidence, 9 with low-quality evidence, 3 with moderate-quality evidence, and 0 with high-quality evidence. Descriptive analysis showed that acupuncture appears to be a clinically effective and safe treatment for PD. Conclusions: The use of acupuncture for the treatment of PD may be clinically effective and safe. This conclusion must be interpreted cautiously due to the generally low methodological quality and low quality of evidence of the included studies.
Collapse
Affiliation(s)
- Jinke Huang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohui Qin
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences), Guangzhou, China
| | - Xiaowen Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Peng Y, Guo L, Gu A, Shi B, Ren Y, Cong J, Yang X. Electroacupuncture alleviates polycystic ovary syndrome-like symptoms through improving insulin resistance, mitochondrial dysfunction, and endoplasmic reticulum stress via enhancing autophagy in rats. Mol Med 2020; 26:73. [PMID: 32698821 PMCID: PMC7374902 DOI: 10.1186/s10020-020-00198-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Electroacupuncture (EA), a treatment derived from traditional Chinese medicine, can effectively improve hyperandrogenism and insulin resistance in patients with polycystic ovary syndrome (PCOS), however, its underlying mechanisms remain obscure. This study aimed to investigate whether EA could mitigate PCOS-like symptoms in rats by regulating autophagy. METHODS A rat model of PCOS-like symptoms was established by subcutaneous injection with dehydroepiandrosterone (DHEA), and then EA treatment at acupoints (ST29 and SP6) was carried out for 5 weeks. To inhibit autophagy in rats, intraperitoneal injection with 0.5 mg/kg 3-MA (an autophagy inhibitor) was performed at 30 min before each EA treatment. RESULTS EA intervention alleviated PCOS-like symptoms in rats, which was partly counteracted by the combination with 3-MA. Moreover, DHEA-exposure-induced deficient autophagy in skeletal muscle was improved by EA treatment. EA-mediated improvements in insulin resistance, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in PCOS-like rats were counteracted by 3-MA pretreatment. Mechanically, EA attenuated autophagy deficiency-mediated insulin resistance in PCOS-like rats via inactivating mTOR/4E-BP1 signaling pathway. CONCLUSIONS Taken together, our findings indicate that EA treatment ameliorates insulin resistance, mitochondrial dysfunction, and ER stress through enhancing autophagy in a PCOS-like rat model. Our study provides novel insight into the mechanisms underlying the treatment of EA in PCOS, which offers more theoretic foundation for its clinical application.
Collapse
Affiliation(s)
- Yan Peng
- Disease Prevention Center, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Liyuan Guo
- Department of Gynecological Oncology, Cancer Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Anxin Gu
- Department of Radiation oncology, Cancer Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Beibei Shi
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Yukun Ren
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Jing Cong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Xinming Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China.
| |
Collapse
|
8
|
Guo X, Ma T. Effects of Acupuncture on Neurological Disease in Clinical- and Animal-Based Research. Front Integr Neurosci 2019; 13:47. [PMID: 31543763 PMCID: PMC6729102 DOI: 10.3389/fnint.2019.00047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Neurological disease, including Alzheimer’s disease (AD), Parkinson’s disease (PD), which were caused by abnormalities in the nervous system involves the accumulation of false proteins, neurotransmitter abnormalities, neuronal apoptosis, etc. As an alternative supplementary medicine (ASM), acupuncture plays an important role in the treatment of neurological diseases. In this review article, we summarized the current evidence for the treatment efficacy of acupuncture in AD and PD from the perspective of clinical trials and animal model. Acupuncture can inhibit the accumulation of toxic proteins in neurological diseases, modulate energy supply based on glucose metabolism, depress neuronal apoptosis, etc., and exert a wide range of neuroprotective effects.
Collapse
Affiliation(s)
- Xiangyu Guo
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Ma
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Zhao Y, Luo D, Ning Z, Rong J, Lao L. Electro-Acupuncture Ameliorated MPTP-Induced Parkinsonism in Mice via TrkB Neurotrophic Signaling. Front Neurosci 2019; 13:496. [PMID: 31156376 PMCID: PMC6528026 DOI: 10.3389/fnins.2019.00496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), have shown promise as neuroprotective agents, indicating their potential in therapeutic strategies for neurodegenerative disease. However, the inherent bioactivity and pharmaceutical limitations of BDNF compromise its clinical efficacy. Research has documented the beneficial effects of electroacupuncture (EA) against neurodegeneration, possibly by BDNF-mediated mechanisms. The present study was designed to clarify whether EA can mount a neuroprotective effect in mice lesioned with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) via stimulation of the BDNF-TrkB signaling pathway. We found that EA not only ameliorated the motor dysfunction but also restored the dopaminergic neuronal function and upregulated BDNF expression in MPTP-lesioned mice. Interestingly, the TrkB inhibitor K252a abolished the neuroprotective effects of EA. Western blot analyses further demonstrated that EA might recover the level of phospho-Akt, phospho-ERK1/2, and BDNF against MPTP neurotoxicity via reversing the imbalance between TrkB FL and TrkB T1. Taken together, the results of the present study show that EA stimulation can ameliorate MPTP-induced parkinsonism in mice. Such a neuroprotective effect may be partially mediated via restoring TrkB neurotrophic signaling.
Collapse
Affiliation(s)
- Yingke Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Dan Luo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhipeng Ning
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lixing Lao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
10
|
Ko JH, Lee H, Kim SN, Park HJ. Does Acupuncture Protect Dopamine Neurons in Parkinson's Disease Rodent Model?: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2019; 11:102. [PMID: 31139074 PMCID: PMC6517785 DOI: 10.3389/fnagi.2019.00102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Acupuncture has been reported to have significant effects, not only in alleviating impaired motor function, but also rescuing dopaminergic neuron deficits in rodent models of Parkinson's disease (PD). However, a systemic analysis of these beneficial effects has yet to be performed. Objective: To evaluate the neuroprotective effect of acupuncture in animal models of PD. Methods: A literature search of the PubMed, MEDLINE, EMBASE, China National Knowledge Infrastructure, Research Information Service System, and Japan Society of Acupuncture and Moxibustion databases was performed to retrieve studies that investigated the effects of acupuncture on PD. The quality of each included study was evaluated using the 10-item checklist modified from the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies. RevMan version 5.3 (Foundation for Statistical Computing, Vienna, Austria) was used for meta-analysis. Results: The 42 studies included scored between 2 and 7 points, with a mean score of 4.6. Outcome measures included tyrosine hydroxylase (TH) level and dopamine content. Meta-analysis results revealed statistically significant effects of acupuncture for increasing both TH levels (33.97 [95% CI 33.15-34.79]; p < 0.00001) and dopamine content (4.23 [95% CI 3.53-4.92]; p < 0.00001) compared with that observed in PD control groups. In addition, motor dysfunctions exhibited by model PD animals were also mitigated by acupuncture treatment. Conclusions: Although there were limitations in the number and quality of the included studies, results of this analysis suggest that acupuncture exerts a protective effect on dopaminergic neurons in rodent models of PD.
Collapse
Affiliation(s)
- Jade Heejae Ko
- College of Korean Medicine, Dongguk University, Goyang, South Korea.,Graduate School, Dongguk University, Seoul, South Korea
| | - Hyangsook Lee
- Acupuncture and Meridian Science Research Center, Seoul, South Korea.,College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, Seoul, South Korea.,College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|