1
|
Porter DDL, Morton PD. Clearing techniques for visualizing the nervous system in development, injury, and disease. J Neurosci Methods 2020; 334:108594. [PMID: 31945400 PMCID: PMC10674098 DOI: 10.1016/j.jneumeth.2020.108594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/05/2023]
Abstract
Modern clearing techniques enable high resolution visualization and 3D reconstruction of cell populations and their structural details throughout large biological samples, including intact organs and even entire organisms. In the past decade, these methods have become more tractable and are now being utilized to provide unforeseen insights into the complexities of the nervous system. While several iterations of optical clearing techniques have been developed, some are more suitable for specific applications than others depending on the type of specimen under study. Here we review findings from select studies utilizing clearing methods to visualize the developing, injured, and diseased nervous system within numerous model systems and species. We note trends and imbalances in the types of research questions being addressed with clearing methods across these fields in neuroscience. In addition, we discuss restrictions in applying optical clearing methods for postmortem tissue from humans and large animals and emphasize the lack in continuity between studies of these species. We aim for this review to serve as a key outline of available tissue clearing methods used successfully to address issues across neuronal development, injury/repair, and aging/disease.
Collapse
Affiliation(s)
- Demisha D L Porter
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Paul D Morton
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
2
|
Intracellular Neuroprotective Mechanisms in Neuron-Glial Networks Mediated by Glial Cell Line-Derived Neurotrophic Factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1036907. [PMID: 31827666 PMCID: PMC6885812 DOI: 10.1155/2019/1036907] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/19/2019] [Indexed: 12/28/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has a pronounced neuroprotective effect in various nervous system pathologies, including ischaemic brain damage and neurodegenerative diseases. In this work, we studied the effect of GDNF on the ultrastructure and functional activity of neuron-glial networks during acute hypoxic exposure, a key damaging factor in numerous brain pathologies. We analysed the molecular mechanisms most likely involved in the positive effects of GDNF. Hypoxia modelling was performed on day 14 of culturing primary hippocampal cells obtained from mouse embryos (E18). GDNF (1 ng/ml) was added to the culture medium 20 min before oxygen deprivation. Acute hypoxia-induced irreversible changes in the ultrastructure of neurons and astrocytes led to the loss of functional Сa2+ activity and neural network disruption. Destructive changes in the mitochondrial apparatus and its functional activity characterized by an increase in the basal oxygen consumption rate and respiratory chain complex II activity during decreased stimulated respiration intensity were observed 24 hours after hypoxic injury. At a concentration of 1 ng/ml, GDNF maintained the functional metabolic network activity in primary hippocampal cultures and preserved the structure of the synaptic apparatus and number of mature chemical synapses, confirming its neuroprotective effect. GDNF maintained the normal structure of mitochondria in neuronal outgrowth but not in the soma. Analysis of the possible GDNF mechanism revealed that RET kinase, a component of the receptor complex, and the PI3K/Akt pathway are crucial for the neuroprotective effect of GDNF. The current study also revealed the role of GDNF in the regulation of HIF-1α transcription factor expression under hypoxic conditions.
Collapse
|
3
|
Yang C, Li X, Li S, Chai X, Guan L, Qiao L, Li H, Lin J. Organotypic slice culture based on in ovo electroporation for chicken embryonic central nervous system. J Cell Mol Med 2018; 23:1813-1826. [PMID: 30565384 PMCID: PMC6378233 DOI: 10.1111/jcmm.14080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/13/2018] [Indexed: 11/29/2022] Open
Abstract
Organotypic slice culture is a living cell research technique which blends features of both in vivo and in vitro techniques. While organotypic brain slice culture techniques have been well established in rodents, there are few reports on the study of organotypic slice culture, especially of the central nervous system (CNS), in chicken embryos. We established a combined in ovo electroporation and organotypic slice culture method to study exogenous genes functions in the CNS during chicken embryo development. We performed in ovo electroporation in the spinal cord or optic tectum prior to slice culture. When embryonic development reached a specific stage, green fluorescent protein (GFP)-positive embryos were selected and fluorescent expression sites were cut under stereo fluorescence microscopy. Selected tissues were embedded in 4% agar. Tissues were sectioned on a vibratory microtome and 300 μm thick sections were mounted on a membrane of millicell cell culture insert. The insert was placed in a 30-mm culture dish and 1 ml of slice culture media was added. We show that during serum-free medium culture, the slice loses its original structure and propensity to be strictly regulated, which are the characteristics of the CNS. However, after adding serum, the histological structure of cultured-tissue slices was able to be well maintained and neuronal axons were significantly longer than that those of serum-free medium cultured-tissue slices. As the structure of a complete single neuron can be observed from a slice culture, this is a suitable way of studying single neuronal dynamics. As such, we present an effective method to study axon formation and migration of single neurons in vitro.
Collapse
Affiliation(s)
- Ciqing Yang
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| | - Xiaoying Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Shuanqing Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xuejun Chai
- Department of Anatomy, Xi'an Medical University, Xi'an, China
| | - Lihong Guan
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Liang Qiao
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Han Li
- Advanced Medical and Dental Institute, University Sains Malaysia, Bertam, Penang, Malaysia
| | - Juntang Lin
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
4
|
Kirschen GW, Kéry R, Ge S. The Hippocampal Neuro-Glio-Vascular Network: Metabolic Vulnerability and Potential Neurogenic Regeneration in Disease. Brain Plast 2018; 3:129-144. [PMID: 30151338 PMCID: PMC6091038 DOI: 10.3233/bpl-170055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Brain metabolism is a fragile balance between nutrient/oxygen supply provided by the blood and neuronal/glial demand. Small perturbations in these parameters are necessary for proper homeostatic functioning and information processing, but can also cause significant damage and cell death if dysregulated. During embryonic and early post-natal development, massive neurogenesis occurs, a process that continues at a limited rate in adulthood in two neurogenic niches, one in the lateral ventricle and the other in the hippocampal dentate gyrus. When metabolic demand does not correspond with supply, which can occur dramatically in the case of hypoxia or ischemia, or more subtly in the case of neuropsychiatric or neurodegenerative disorders, both of these neurogenic niches can respond—either in a beneficial manner, to regenerate damaged or lost tissue, or in a detrimental fashion—creating aberrant synaptic connections. In this review, we focus on the complex relationship that exists between the cerebral vasculature and neurogenesis across development and in disease states including hypoxic-ischemic injury, hypertension, diabetes mellitus, and Alzheimer’s disease. Although there is still much to be elucidated, we are beginning to appreciate how neurogenesis may help or harm the metabolically-injured brain, in the hopes that these insights can be used to tailor novel therapeutics to regenerate damaged tissue after injury.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Medical Scientist Training Program (MSTP), Stony Brook Medicine, Stony Brook, NY, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Rachel Kéry
- Medical Scientist Training Program (MSTP), Stony Brook Medicine, Stony Brook, NY, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|