1
|
Garcia MAC, Carvalho TSD, Matsuda RH, Baffa O, Imbiriba LA, Souza VH. Forearm Posture Affects the Corticospinal Excitability of Intrinsic and Extrinsic Hand Muscles in Dominant and Nondominant Sides. J Appl Biomech 2024; 40:316-322. [PMID: 38925535 DOI: 10.1123/jab.2022-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/06/2023] [Accepted: 04/17/2024] [Indexed: 06/28/2024]
Abstract
Different forearm postures can modulate corticospinal excitability. However, there is no consensus on whether handedness plays a role in such a mechanism. This study investigated the effects of 3 forearm postures (pronation, neutral, and supination) on the corticospinal excitability of muscles from the dominant and nondominant upper limbs. Surface electromyography was recorded from the abductor digiti minimi, flexor pollicis brevis, and flexor carpi radialis from both sides of 12 right-handed volunteers. Transcranial magnetic stimulation pulses were applied to each muscle's hotspot in both cerebral hemispheres. Motor-evoked potential peak-to-peak amplitude and latency and resting motor threshold were measured. The data were evaluated by analysis of variance. The level of significance was set at 5%. The resting motor threshold was similar for the 3 muscles and both sides. Motor-evoked potential peak-to-peak amplitude from flexor pollicis brevis was lower during supination, and the dominant upper limb latency was longer. The flexor carpi radialis presented lower motor-evoked potential peak-to-peak amplitudes for neutral and shorter latencies during supination. Abductor digiti minimi seemed not to be affected by posture or side. Different muscles from dominant and nondominant sides may undergo corticospinal modulation, even distally localized from a particular joint and under rest.
Collapse
Affiliation(s)
- Marco Antonio Cavalcanti Garcia
- Programa de Pós-Graduação em Ciências da Reabilitação e Desempenho Físico-Funcional, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
- Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Thiago Santos de Carvalho
- Departamento de Biociências e Atividades Físicas, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Renan Hiroshi Matsuda
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Oswaldo Baffa
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis Aureliano Imbiriba
- Departamento de Biociências e Atividades Físicas, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Victor Hugo Souza
- Programa de Pós-Graduação em Ciências da Reabilitação e Desempenho Físico-Funcional, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, Espoo, Finland
| |
Collapse
|
2
|
Shanks MJ, Cirillo J, Stinear CM, Byblow WD. Reliability of a TMS-derived threshold matrix of corticomotor function. Exp Brain Res 2023; 241:2829-2843. [PMID: 37898579 PMCID: PMC10635992 DOI: 10.1007/s00221-023-06725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Transcranial magnetic stimulation (TMS) studies typically focus on suprathreshold motor evoked potentials (MEPs), overlooking small MEPs representing subthreshold corticomotor pathway activation. Assessing subthreshold excitability could provide insights into corticomotor pathway integrity and function, particularly in neurological conditions like stroke. The aim of the study was to examine the test-retest reliability of metrics derived from a novel compositional analysis of MEP data from older adults. The study also compared the composition between the dominant (D) and non-dominant (ND) sides and explored the association between subthreshold responses and resting motor threshold. In this proof-of-concept study, 23 healthy older adults participated in two identical experimental sessions. Stimulus-response (S-R) curves and threshold matrices were constructed using single-pulse TMS across intensities to obtain MEPs in four upper limb muscles. S-R curves had reliable slopes for every muscle (Intraclass Correlation Coefficient range = 0.58-0.88). Subliminal and suprathreshold elements of the threshold matrix showed good-excellent reliability (D subliminal ICC = 0.83; ND subliminal ICC = 0.79; D suprathreshold ICC = 0.92; ND suprathreshold ICC = 0.94). By contrast, subthreshold elements of the matrix showed poor reliability, presumably due to a floor effect (D subthreshold ICC = 0.39; ND subthreshold ICC = 0.05). No composition differences were found between D and ND sides (suprathreshold BF01 = 3.85; subthreshold BF01 = 1.68; subliminal BF01 = 3.49). The threshold matrix reliably assesses subliminal and suprathreshold MEPs in older adults. Further studies are warranted to evaluate the utility of compositional analyses for assessing recovery of corticomotor pathway function after neurological injury.
Collapse
Affiliation(s)
- Maxine J Shanks
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - John Cirillo
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Cathy M Stinear
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Winston D Byblow
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
3
|
Cantone M, Fisicaro F, Ferri R, Bella R, Pennisi G, Lanza G, Pennisi M. Sex differences in mild vascular cognitive impairment: A multimodal transcranial magnetic stimulation study. PLoS One 2023; 18:e0282751. [PMID: 36867595 PMCID: PMC9983846 DOI: 10.1371/journal.pone.0282751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Sex differences in vascular cognitive impairment (VCI) at risk for future dementia are still debatable. Transcranial magnetic stimulation (TMS) is used to evaluate cortical excitability and the underlying transmission pathways, although a direct comparison between males and females with mild VCI is lacking. METHODS Sixty patients (33 females) underwent clinical, psychopathological, functional, and TMS assessment. Measures of interest consisted of: resting motor threshold, latency of motor evoked potentials (MEPs), contralateral silent period, amplitude ratio, central motor conduction time (CMCT), including the F wave technique (CMCT-F), short-interval intracortical inhibition (SICI), intracortical facilitation, and short-latency afferent inhibition, at different interstimulus intervals (ISIs). RESULTS Males and females were comparable for age, education, vascular burden, and neuropsychiatric symptoms. Males scored worse at global cognitive tests, executive functioning, and independence scales. MEP latency was significantly longer in males, from both sides, as well CMCT and CMCT-F from the left hemisphere; a lower SICI at ISI of 3 ms from the right hemisphere was also found. After correction for demographic and anthropometric features, the effect of sex remained statistically significant for MEP latency, bilaterally, and for CMCT-F and SICI. The presence of diabetes, MEP latency bilaterally, and both CMCT and CMCT-F from the right hemisphere inversely correlated with executive functioning, whereas TMS did not correlate with vascular burden. CONCLUSIONS We confirm the worse cognitive profile and functional status of males with mild VCI compared to females and first highlight sex-specific changes in intracortical and cortico-spinal excitability to multimodal TMS in this population. This points to some TMS measures as potential markers of cognitive impairment, as well as targets for new drugs and neuromodulation therapies.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- Neurology Unit, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Giovanni Pennisi
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- * E-mail:
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Dubbioso R, Pellegrino G, Ranieri F, Di Pino G, Capone F, Dileone M, Iodice R, Ruggiero L, Tozza S, Uncini A, Manganelli F, Di Lazzaro V. BDNF polymorphism and inter hemispheric balance of motor cortex excitability: a preliminary study. J Neurophysiol 2021; 127:204-212. [PMID: 34936818 DOI: 10.1152/jn.00268.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preclinical studies have demonstrated that Brain-Derived Neurotrophic Factor (BDNF) plays a crucial role in the homeostatic regulation of cortical excitability and excitation/inhibition balance. Using transcranial magnetic stimulation (TMS) techniques we investigated whether BDNF polymorphism could influence cortical excitability of the left and right primary motor cortex in healthy humans. Twenty-nine participants were recruited and genotyped for the presence of the BDNF Val66Met polymorphism, namely homozygous for the valine allele (Val/Val), heterozygotes (Val/Met), and homozygous for the methionine allele (Met/Met). Blinded to the latter, we evaluated inhibitory and facilitatory circuits of the left (LH) and right motor cortex (RH) by measuring resting (RMT) and active motor threshold (AMT), short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). For each neurophysiological metric we also considered the inter-hemispheric balance expressed by the Laterality Index (LI). Val/Val participants (n= 21) exhibited an overall higher excitability of the LH compared to the RH, as probed by lower motor thresholds, lower SICI and higher ICF. Val/Val participants displayed positive LI, especially for AMT and ICF (all p< 0.05), indicating higher LH excitability and more pronounced inter-hemispheric excitability imbalance as compared to Met carriers. Our preliminary results suggest that BDNF Val66Met polymorphism might influence interhemispheric balance of motor cortex excitability.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Giovanni Pellegrino
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Federico Ranieri
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Michele Dileone
- Faculty of Health Sciences, University of Castilla La Mancha, Talavera de la Reina, Spain
| | - Rosa Iodice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Stefano Tozza
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Antonino Uncini
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
5
|
Spinal and Cerebral Integration of Noxious Inputs in Left-handed Individuals. Brain Topogr 2021; 34:568-586. [PMID: 34338897 DOI: 10.1007/s10548-021-00864-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Some pain-related information is processed preferentially in the right cerebral hemisphere. Considering that functional lateralization can be affected by handedness, spinal and cerebral pain-related responses may be different between right- and left-handed individuals. Therefore, this study aimed to investigate the cortical and spinal mechanisms of nociceptive integration when nociceptive stimuli are applied to right -handed vs. left -handed individuals. The NFR, evoked potentials (ERP: P45, N100, P260), and event-related spectral perturbations (ERSP: theta, alpha, beta and gamma band oscillations) were compared between ten right-handed and ten left-handed participants. Pain was induced by transcutaneous electrical stimulation of the lower limbs and left upper limb. Stimulation intensity was adjusted individually in five counterbalanced conditions of 21 stimuli each: three unilateral (right lower limb, left lower limb, and left upper limb stimulation) and two bilateral conditions (right and left lower limbs, and the right lower limb and left upper limb stimulation). The amplitude of the NFR, ERP, ERSP, and pain ratings were compared between groups and conditions using a mixed ANOVA. A significant increase of responses was observed in bilateral compared with unilateral conditions for pain intensity, NFR amplitude, N100, theta oscillations, and gamma oscillations. However, these effects were not significantly different between right- and left-handed individuals. These results suggest that spinal and cerebral integration of bilateral nociceptive inputs is similar between right- and left-handed individuals. They also imply that pain-related responses measured in this study may be examined independently of handedness.
Collapse
|
6
|
Geed S, Grainger M, Harris-Love ML, Lum PS, Dromerick AW. Shoulder position and handedness differentially affect excitability and intracortical inhibition of hand muscles. Exp Brain Res 2021; 239:1517-1530. [PMID: 33751158 PMCID: PMC8317198 DOI: 10.1007/s00221-021-06077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 10/22/2022]
Abstract
Individuals with stroke show distinct differences in hand function impairment when the shoulder is in adduction, within the workspace compared to when the shoulder is abducted, away from the body. To better understand how shoulder position affects hand control, we tested the corticomotor excitability and intracortical control of intrinsic and extrinsic hand muscles important for grasp in twelve healthy individuals. Motor evoked potentials (MEP) using single and paired-pulse transcranial magnetic stimulation were elicited in extensor digitorum communis (EDC), flexor digitorum superficialis (FDS), first dorsal interosseous (FDI), and abductor pollicis brevis (APB). The shoulder was fully supported in horizontal adduction (ADD) or abduction (ABD). Separate mixed-effect models were fit to the MEP parameters using shoulder position (or upper-extremity [UE] side) as fixed and participants as random effects. In the non-dominant UE, EDC showed significantly greater MEPs in shoulder ABD than ADD. In contrast, the dominant side EDC showed significantly greater MEPs in ADD compared to ABD; %facilitation of EDC on dominant side showed significant stimulus intensity x position interaction, EDC excitability was significantly greater in ADD at 150% of the resting threshold. Intrinsic hand muscles of the dominant UE received significantly more intracortical inhibition (SICI) when the shoulder was in ADD compared to ABD; there was no position-dependent modulation of SICI on the non-dominant side. Our findings suggest that these resting-state changes in hand muscle excitabilities reflect the natural statistics of UE movements, which in turn may arise from as well as shape the nature of shoulder-hand coupling underlying UE behaviors.
Collapse
Affiliation(s)
- Shashwati Geed
- Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, USA.
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA.
| | - Megan Grainger
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
| | - Michelle L Harris-Love
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
| | - Peter S Lum
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
- Department of Bioengineering, The Catholic University of America, Washington, DC, USA
| | - Alexander W Dromerick
- Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, USA
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
| |
Collapse
|
7
|
Garcia MAC, Nogueira-Campos AA, Moraes VH, Souza VH. Can Corticospinal Excitability Shed Light Into the Effects of Handedness on Motor Performance? FRONTIERS IN NEUROERGONOMICS 2021; 2:651501. [PMID: 38235226 PMCID: PMC10790861 DOI: 10.3389/fnrgo.2021.651501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/01/2021] [Indexed: 01/19/2024]
Affiliation(s)
- Marco Antonio Cavalcanti Garcia
- Programa de Pós-Graduação em Ciências da Reabilitação e Desempenho Físico-Funcional, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Laboratório de Neurofisiologia Cognitiva (LabNeuro), Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Núcleo de Pesquisas em Neurociências e Reabilitação Motora, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anaelli Aparecida Nogueira-Campos
- Laboratório de Neurofisiologia Cognitiva (LabNeuro), Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Victor Hugo Moraes
- Núcleo de Pesquisas em Neurociências e Reabilitação Motora, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Hugo Souza
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
8
|
Clinical and Electrophysiological Hints to TMS in De Novo Patients with Parkinson's Disease and Progressive Supranuclear Palsy. J Pers Med 2020. [PMID: 33322688 DOI: 10.3390/jpm10040274.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) can non-invasively probe cortical excitability in movement disorders, although clinical significance is still controversial, especially at early stages. We compare single-pulse TMS in two prototypic synucleinopathy and tauopathy-i.e., Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), respectively-to find neurophysiological differences and identify early measures associated with cognitive impairment. METHODS 28 PD and 23 PSP de novo patients were age-matched with 28 healthy controls, all right-handed and drug-free. Amplitude and latency of motor evoked potentials (MEP), central motor conduction time, resting motor threshold (rMT), and cortical silent period (CSP) were recorded through a figure-of-eight coil from the First Dorsal Interosseous muscle (FDI), bilaterally. RESULTS Mini Mental Examination and Frontal Assessment Battery (FAB) scored worse in PSP; PD had worse FAB than controls. Higher MEP amplitude from right FDI in PD and PSP than controls was found, without difference between them. CSP was bilaterally longer in patients than controls, but similar between patient groups. A positive correlation between FAB and rMT was observed in PSP, bilaterally. CONCLUSIONS Despite the small sample size, PD and PSP might share, at early stage, a similar global electrocortical asset. rMT might detect and possibly predict cognitive deterioration in PSP.
Collapse
|
9
|
Fisicaro F, Lanza G, Cantone M, Ferri R, Pennisi G, Nicoletti A, Zappia M, Bella R, Pennisi M. Clinical and Electrophysiological Hints to TMS in De Novo Patients with Parkinson's Disease and Progressive Supranuclear Palsy. J Pers Med 2020; 10:jpm10040274. [PMID: 33322688 PMCID: PMC7768400 DOI: 10.3390/jpm10040274] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) can non-invasively probe cortical excitability in movement disorders, although clinical significance is still controversial, especially at early stages. We compare single-pulse TMS in two prototypic synucleinopathy and tauopathy-i.e., Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), respectively-to find neurophysiological differences and identify early measures associated with cognitive impairment. METHODS 28 PD and 23 PSP de novo patients were age-matched with 28 healthy controls, all right-handed and drug-free. Amplitude and latency of motor evoked potentials (MEP), central motor conduction time, resting motor threshold (rMT), and cortical silent period (CSP) were recorded through a figure-of-eight coil from the First Dorsal Interosseous muscle (FDI), bilaterally. RESULTS Mini Mental Examination and Frontal Assessment Battery (FAB) scored worse in PSP; PD had worse FAB than controls. Higher MEP amplitude from right FDI in PD and PSP than controls was found, without difference between them. CSP was bilaterally longer in patients than controls, but similar between patient groups. A positive correlation between FAB and rMT was observed in PSP, bilaterally. CONCLUSIONS Despite the small sample size, PD and PSP might share, at early stage, a similar global electrocortical asset. rMT might detect and possibly predict cognitive deterioration in PSP.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97-95123 Catania, Italy; (F.F.); (M.P.)
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia, 78-95123 Catania, Italy;
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero, 73-94018 Troina, Italy;
- Correspondence: ; Tel.: +39-095-3782448
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, Via Luigi Russo, 6-93100 Caltanissetta, Italy;
| | - Raffaele Ferri
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero, 73-94018 Troina, Italy;
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia, 78-95123 Catania, Italy;
| | - Alessandra Nicoletti
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia, 87-95123 Catania, Italy; (A.N.); (M.Z.); (R.B.)
| | - Mario Zappia
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia, 87-95123 Catania, Italy; (A.N.); (M.Z.); (R.B.)
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia, 87-95123 Catania, Italy; (A.N.); (M.Z.); (R.B.)
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97-95123 Catania, Italy; (F.F.); (M.P.)
| |
Collapse
|
10
|
Nicolini C, Harasym D, Turco CV, Nelson AJ. Human motor cortical organization is influenced by handedness. Cortex 2019; 115:172-183. [PMID: 30826624 DOI: 10.1016/j.cortex.2019.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/29/2018] [Accepted: 01/10/2019] [Indexed: 11/28/2022]
Abstract
Although there is some evidence that handedness is associated with structural and functional differences in the motor cortex, findings remain inconclusive. Here, we evaluated whether handedness influences the location, size and overlap of the cortical representations of upper limb muscles across hemispheres in right- versus left-handed individuals. Using transcranial magnetic stimulation, the cortical representations of abductor pollicis brevis, flexor carpi radialis and biceps brachii muscles were mapped bilaterally with a 6 by 5 grid space. Results indicate that right-handers had more lateral and posterior representations in the non-dominant hemisphere as well as greater overall cortical territory compared to left-handers. Right- and left-handers did not differ in the extent of overlap between muscle representations. Our findings suggest that human motor cortical organization of upper limb muscles is indeed influenced by handedness, specifically with regard to the location of non-dominant cortical muscle representations and the size of cortical territory dedicated to upper limb muscle representations.
Collapse
Affiliation(s)
- Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| | - Diana Harasym
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada.
| | - Claudia V Turco
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|