1
|
Pless A, Ware D, Saggu S, Rehman H, Morgan J, Wang Q. Understanding neuropsychiatric symptoms in Alzheimer's disease: challenges and advances in diagnosis and treatment. Front Neurosci 2023; 17:1263771. [PMID: 37732300 PMCID: PMC10508352 DOI: 10.3389/fnins.2023.1263771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Neuropsychiatric symptoms (NPS) in Alzheimer's disease (AD) affect up to 97% of AD patients, with an estimated 80% of current AD patients experiencing these symptoms. Common AD-associated NPS include depression, anxiety, agitation, aggression, and apathy. The severity of NPS in AD is typically linked to the disease's progression and the extent of cognitive decline. Additionally, these symptoms are responsible for a significant increase in morbidity, mortality, caregiver burden, earlier nursing home placement, and greater healthcare expenditure. Despite their high prevalence and significant impact, there is a notable lack of clinical research on NPS in AD. In this article, we explore and analyze the prevalence, symptom manifestations, challenges in diagnosis, and treatment options of NPS associated with AD. Our literature review reveals that distinguishing and accurately diagnosing the NPS associated with AD remains a challenging task in clinical settings. It is often difficult to discern whether NPS are secondary to pathophysiological changes from AD or are comorbid psychiatric conditions. Furthermore, the availability of effective pharmaceutical interventions, as well as non-pharmacotherapies for NPS in AD, remains limited. By highlighting the advance and challenges in diagnosis and treatment of AD-associated NPS, we aspire to offer new insights into the complexity of identifying and treating these symptoms within the context of AD, and contribute to a deeper understanding of the multifaceted nature of NPS in AD.
Collapse
Affiliation(s)
- Andrew Pless
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Destany Ware
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Shalini Saggu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Hasibur Rehman
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - John Morgan
- Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
2
|
Zhou X, Du J, Qing L, Mee T, Xu X, Wang Z, Xu C, Jia X. Identification of sensory and motor nerve fascicles by immunofluorescence staining after peripheral nerve injury. J Transl Med 2021; 19:207. [PMID: 33985539 PMCID: PMC8117274 DOI: 10.1186/s12967-021-02871-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/03/2021] [Indexed: 11/25/2022] Open
Abstract
Background Inappropriate matching of motor and sensory fibers after nerve repair or nerve grafting can lead to failure of nerve recovery. Identification of motor and sensory fibers is important for the development of new approaches that facilitate neural regeneration and the next generation of nerve signal-controlled neuro-prosthetic limbs with sensory feedback technology. Only a few methods have been reported to differentiate sensory and motor nerve fascicles, and the reliability of these techniques is unknown. Immunofluorescence staining is one of the most commonly used methods to distinguish sensory and motor nerve fibers, however, its accuracy remains unknown. Methods In this study, we aim to determine the efficacy of popular immunofluorescence markers for motor and sensory nerve fibers. We harvested the facial (primarily motor fascicles) and sural (primarily sensory fascicles) nerves in rats, and examined the immunofluorescent staining expressions of motor markers (choline acetyltransferase (ChAT), tyrosine kinase (TrkA)), and sensory markers [neurofilament protein 200 kDa (NF-200), calcitonin gene-related peptide (CGRP) and Transient receptor potential vanillic acid subtype 1 (TRPV1)]. Three methods, including the average area percentage, the mean gray value, and the axon count, were used to quantify the positive expression of nerve markers in the immunofluorescence images. Results Our results suggest the mean gray value method is the most reliable method. The mean gray value of immunofluorescence in ChAT (63.0 ± 0.76%) and TRKA (47.6 ± 0.43%) on the motor fascicles was significantly higher than that on the sensory fascicles (ChAT: 49.2 ± 0.72%, P < 0.001; and TRKA: 29.1 ± 0.85%, P < 0.001). Additionally, the mean gray values of TRPV1 (51.5 ± 0.83%), NF-200 (61.5 ± 0.62%) and CGRP (37.7 ± 1.22%) on the motor fascicles were significantly lower than that on the sensory fascicles respectively (71.9 ± 2.32%, 69.3 ± 0.46%, and 54.3 ± 1.04%) (P < 0.001). The most accurate cutpoint occurred using CHAT/CRCP ratio, where a value of 0.855 had 100% sensitivity and 100% specificity to identify motor and sensory nerve with an area under the ROC curve of 1.000 (P < 0.001). Conclusions A combination of ChAT and CGRP is suggested to distinguish motor and sensory nerve fibers.
Collapse
Affiliation(s)
- Xijie Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children'S Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Liming Qing
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Thomas Mee
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiang Xu
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Zhuoran Wang
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Cynthia Xu
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA. .,Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Goins J, Henkel N, Coulibaly AP, Isaacson LG. Activated Microglia in the Rat Spinal Cord Following Peripheral Axon Injury Promote Glial and Neuronal Plasticity Which is Necessary for Long-Term Neuronal Survival. Cell Mol Neurobiol 2021; 41:309-326. [PMID: 32335774 PMCID: PMC11448634 DOI: 10.1007/s10571-020-00853-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
Following the transection of peripheral sympathetic preganglionic axons comprising the cervical sympathetic trunk (CST), we observe robust glial and neuronal plasticity at 1 week post-injury in the rat spinal cord intermediolateral cell column (IML), which houses the injured parent neuronal cell bodies. This plasticity contributes to neuroprotection, as no neuronal loss in the IML is present at 16 weeks post-injury. Here, we administered the antibiotic minocycline or vehicle (VEH) daily for 1 week after CST transection to investigate the role of activated microglia in IML glial and neuronal plasticity and subsequent neuronal survival. At 1 week post-injury, minocycline treatment did not alter microglia number in the IML, but led to a dampened microglia activation state. In addition, the increases in oligodendrocyte (OL) lineage cells and activated astrocytes following injury in VEH rats were attenuated in the minocycline-treated rats. Further, the normal downregulation of choline acetyltransferase (ChAT) in the injured neurons was blunted. At 16 weeks post-injury, fewer ChAT+ neurons were present in the minocycline-treated rats, suggesting that activated microglia together with the glial and neuronal plasticity at 1 week post-injury contribute to the long-term survival of the injured neurons. These results provide evidence for beneficial crosstalk between activated microglia and neurons as well as other glial cells in the cord following peripheral axon injury, which ultimately leads to neuroprotection. The influences of microglia activation in promoting neuronal survival should be considered when developing therapies to administer minocycline for the treatment of neurological pathologies.
Collapse
Affiliation(s)
- Jessie Goins
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, 45056, USA
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Nicholas Henkel
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, 45056, USA
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Aminata P Coulibaly
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, 45056, USA
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Lori G Isaacson
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, 45056, USA.
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|