1
|
Zheng Z, Lin X, Zhao Z, Lin Q, Liu J, Chen M, Wu W, Wu Z, Liu N, Chen H. A vascular endothelial growth factor-loaded chitosan-hyaluronic acid hydrogel scaffold enhances the therapeutic effect of adipose-derived stem cells in the context of stroke. Neural Regen Res 2025; 20:3591-3605. [PMID: 39248177 PMCID: PMC11974663 DOI: 10.4103/nrr.nrr-d-24-00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/13/2024] [Accepted: 07/05/2024] [Indexed: 09/10/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202512000-00028/figure1/v/2025-01-31T122243Z/r/image-tiff Adipose-derived stem cell, one type of mesenchymal stem cells, is a promising approach in treating ischemia-reperfusion injury caused by occlusion of the middle cerebral artery. However, its application has been limited by the complexities of the ischemic microenvironment. Hydrogel scaffolds, which are composed of hyaluronic acid and chitosan, exhibit excellent biocompatibility and biodegradability, making them promising candidates as cell carriers. Vascular endothelial growth factor is a crucial regulatory factor for stem cells. Both hyaluronic acid and chitosan have the potential to make the microenvironment more hospitable to transplanted stem cells, thereby enhancing the therapeutic effect of mesenchymal stem cell transplantation in the context of stroke. Here, we found that vascular endothelial growth factor significantly improved the activity and paracrine function of adipose-derived stem cells. Subsequently, we developed a chitosan-hyaluronic acid hydrogel scaffold that incorporated vascular endothelial growth factor and first injected the scaffold into an animal model of cerebral ischemia-reperfusion injury. When loaded with adipose-derived stem cells, this vascular endothelial growth factor-loaded scaffold markedly reduced neuronal apoptosis caused by oxygen-glucose deprivation/reoxygenation and substantially restored mitochondrial membrane potential and axon morphology. Further in vivo experiments revealed that this vascular endothelial growth factor-loaded hydrogel scaffold facilitated the transplantation of adipose-derived stem cells, leading to a reduction in infarct volume and neuronal apoptosis in a rat model of stroke induced by transient middle cerebral artery occlusion. It also helped maintain mitochondrial integrity and axonal morphology, greatly improving rat motor function and angiogenesis. Therefore, utilizing a hydrogel scaffold loaded with vascular endothelial growth factor as a stem cell delivery system can mitigate the adverse effects of ischemic microenvironment on transplanted stem cells and enhance the therapeutic effect of stem cells in the context of stroke.
Collapse
Affiliation(s)
- Zhijian Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xiaohui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zijun Zhao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ji Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Wenwen Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhiyun Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Nakagomi T, Nakano-Doi A, Kubo S, Sawano T, Kuramoto Y, Yamahara K, Matsuyama T, Takagi T, Doe N, Yoshimura S. Transplantation of Human Brain-Derived Ischemia-Induced Multipotent Stem Cells Ameliorates Neurological Dysfunction in Mice After Stroke. Stem Cells Transl Med 2023:7177376. [PMID: 37221140 DOI: 10.1093/stcltm/szad031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/20/2023] [Indexed: 05/25/2023] Open
Abstract
We recently demonstrated that injury/ischemia-induced multipotent stem cells (iSCs) develop within post-stroke human brains. Because iSCs are stem cells induced under pathological conditions, such as ischemic stroke, the use of human brain-derived iSCs (h-iSCs) may represent a novel therapy for stroke patients. We performed a preclinical study by transplanting h-iSCs transcranially into post-stroke mouse brains 6 weeks after middle cerebral artery occlusion (MCAO). Compared with PBS-treated controls, h-iSC transplantation significantly improved neurological function. To identify the underlying mechanism, green fluorescent protein (GFP)-labeled h-iSCs were transplanted into post-stroke mouse brains. Immunohistochemistry revealed that GFP+ h-iSCs survived around the ischemic areas and some differentiated into mature neuronal cells. To determine the effect on endogenous neural stem/progenitor cells (NSPCs) by h-iSC transplantation, mCherry-labeled h-iSCs were administered to Nestin-GFP transgenic mice which were subjected to MCAO. As a result, many GFP+ NSPCs were observed around the injured sites compared with controls, indicating that mCherry+ h-iSCs activate GFP+ endogenous NSPCs. In support of these findings, coculture studies revealed that the presence of h-iSCs promotes the proliferation of endogenous NSPCs and increases neurogenesis. In addition, coculture experiments indicated neuronal network formation between h-iSC- and NSPC-derived neurons. These results suggest that h-iSCs exert positive effects on neural regeneration through not only neural replacement by grafted cells but also neurogenesis by activated endogenous NSPCs. Thus, h-iSCs have the potential to be a novel source of cell therapy for stroke patients.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Shuji Kubo
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Yoji Kuramoto
- Department of Neurosurgery, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Kenichi Yamahara
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Toshinori Takagi
- Department of Neurosurgery, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| | - Nobutaka Doe
- Department of Rehabilitation, Hyogo Medical University (Kobe Campus), Chuo-ku, Kobe, Hyogo, Japan
| | - Shinichi Yoshimura
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
- Department of Neurosurgery, Hyogo Medical University (Nishinomiya Campus), Nishinomiya, Hyogo, Japan
| |
Collapse
|
3
|
Malekpour K, Hazrati A, Soudi S, Hashemi SM. Mechanisms behind therapeutic potentials of mesenchymal stem cell mitochondria transfer/delivery. J Control Release 2023; 354:755-769. [PMID: 36706838 DOI: 10.1016/j.jconrel.2023.01.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) perform their therapeutic effects through various mechanisms, including their ability to differentiate, producing different growth factors, immunomodulatory factors, and extracellular vesicles (EVs). In addition to the mentioned mechanisms, a new aspect of the therapeutic potential of MSCs has recently been noticed, which occurs through mitochondrial transfer. Various methods of MSCs mitochondria transfer have been used in studies to benefit from their therapeutic potential. Among these methods, mitochondrial transfer after MSCs transplantation in cell-to-cell contact, EVs-mediated transfer of mitochondria, and the use of MSCs isolated mitochondria (MSCs-mt) are well studied. Pathological conditions can affect the cells in the damaged microenvironment and lead to cells mitochondrial damage. Since the defect in the mitochondrial function of the cell leads to a decrease in ATP production and the subsequent cell death, restoring the mitochondrial content, functions, and hemostasis can affect the functions of the damaged cell. Various studies show that the transfer of MSCs mitochondria to other cells can affect vital processes such as proliferation, differentiation, cell metabolism, inflammatory responses, cell senescence, cell stress, and cell migration. These changes in cell attributes and behavior are very important for therapeutic purposes. For this reason, their investigation can play a significant role in the direction of the researchers'.
Collapse
Affiliation(s)
- Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran..
| |
Collapse
|
4
|
Yoshida Y, Takeda Y, Yamahara K, Yamamoto H, Takagi T, Kuramoto Y, Nakano-Doi A, Nakagomi T, Soma T, Matsuyama T, Doe N, Yoshimura S. Enhanced angiogenic properties of umbilical cord blood primed by OP9 stromal cells ameliorates neurological deficits in cerebral infarction mouse model. Sci Rep 2023; 13:262. [PMID: 36609640 PMCID: PMC9822952 DOI: 10.1038/s41598-023-27424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Umbilical cord blood (UCB) transplantation shows proangiogenic effects and contributes to symptom amelioration in animal models of cerebral infarction. However, the effect of specific cell types within a heterogeneous UCB population are still controversial. OP9 is a stromal cell line used as feeder cells to promote the hematoendothelial differentiation of embryonic stem cells. Hence, we investigated the changes in angiogenic properties, underlying mechanisms, and impact on behavioral deficiencies caused by cerebral infarction in UCB co-cultured with OP9 for up to 24 h. In the network formation assay, only OP9 pre-conditioned UCB formed network structures. Single-cell RNA sequencing and flow cytometry analysis showed a prominent phenotypic shift toward M2 in the monocytic fraction of OP9 pre-conditioned UCB. Further, OP9 pre-conditioned UCB transplantation in mice models of cerebral infarction facilitated angiogenesis in the peri-infarct lesions and ameliorated the associated symptoms. In this study, we developed a strong, fast, and feasible method to augment the M2, tissue-protecting, pro-angiogenic features of UCB using OP9. The ameliorative effect of OP9-pre-conditioned UCB in vivo could be partly due to promotion of innate angiogenesis in peri-infarct lesions.
Collapse
Affiliation(s)
- Yasunori Yoshida
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Yuki Takeda
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Kenichi Yamahara
- Laboratory of Molecular and Cellular Therapy, Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hanae Yamamoto
- grid.272264.70000 0000 9142 153XLaboratory of Molecular and Cellular Therapy, Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Toshinori Takagi
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Yoji Kuramoto
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Akiko Nakano-Doi
- Laboratory of Neurogenesis and CNS Repair, Institute for Advanced Medical Sciences, Hyogo Medial University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Takayuki Nakagomi
- Laboratory of Neurogenesis and CNS Repair, Institute for Advanced Medical Sciences, Hyogo Medial University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Toshihiro Soma
- grid.272264.70000 0000 9142 153XDepartment of Hematology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Tomohiro Matsuyama
- grid.272264.70000 0000 9142 153XDepartment of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Nobutaka Doe
- Laboratory of Neurogenesis and CNS Repair, Institute for Advanced Medical Sciences, Hyogo Medial University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan ,grid.272264.70000 0000 9142 153XDepartment of Occupational Therapy, School of Rehabilitation, Hyogo Medical University, 1-3-6 Minatojima, Chuo-Ku, Kobe, Hyogo 650-8530 Japan
| | - Shinichi Yoshimura
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| |
Collapse
|
5
|
Yang Z, Wei F, Zhang B, Luo Y, Xing X, Wang M, Chen R, Sun G, Sun X. Cellular Immune Signal Exchange From Ischemic Stroke to Intestinal Lesions Through Brain-Gut Axis. Front Immunol 2022; 13:688619. [PMID: 35432368 PMCID: PMC9010780 DOI: 10.3389/fimmu.2022.688619] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
As a vital pivot for the human circulatory system, the brain-gut axis is now being considered as an important channel for many of the small immune molecules’ transductions, including interleukins, interferons, neurotransmitters, peptides, and the chemokines penetrating the mesentery and blood brain barrier (BBB) during the development of an ischemic stroke (IS). Hypoxia-ischemia contributes to pituitary and neurofunctional disorders by interfering with the molecular signal release and communication then providing feedback to the gut. Suffering from such a disease on a long-term basis may cause the peripheral system’s homeostasis to become imbalanced, and it can also lead to multiple intestinal complications such as gut microbiota dysbiosis (GMD), inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), and even the tumorigenesis of colorectal carcinoma (CRC). Correspondingly, these complications will deteriorate the cerebral infarctions and, in patients suffering with IS, it can even ruin the brain’s immune system. This review summarized recent studies on abnormal immunological signal exchange mediated polarization subtype changes, in both macrophages and microglial cells as well as T-lymphocytes. How gut complications modulate the immune signal transduction from the brain are also elucidated and analyzed. The conclusions drawn in this review could provide guidance and novel strategies to benefit remedies for both IS and relative gut lesions from immune-prophylaxis and immunotherapy aspects.
Collapse
Affiliation(s)
- Zizhao Yang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Fei Wei
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Luo
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Xing
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Xiaobo Sun,
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Xiaobo Sun,
| |
Collapse
|
6
|
Kuramoto Y, Fujita M, Takagi T, Takeda Y, Doe N, Yamahara K, Yoshimura S. Early-phase administration of human amnion-derived stem cells ameliorates neurobehavioral deficits of intracerebral hemorrhage by suppressing local inflammation and apoptosis. J Neuroinflammation 2022; 19:48. [PMID: 35151317 PMCID: PMC8840774 DOI: 10.1186/s12974-022-02411-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 02/05/2022] [Indexed: 12/27/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a significant cause of death and disabilities. Recently, cell therapies using mesenchymal stem cells have been shown to improve ICH-induced neurobehavioral deficits. Based on these findings, we designed this study to evaluate the therapeutic efficacy and underlying mechanisms by which human amnion-derived stem cells (hAMSCs) would ameliorate neurobehavioral deficits of ICH-bearing hosts. Methods hAMSCs were induced from amnia obtained by cesarean section and administered intravenously to ICH-bearing mice during the acute phase. The mice were then subject to multitask neurobehavioral tests at the subacute phase. We attempted to optimize the dosage and timing of the hAMSC administrations. In parallel with the hAMSCs, a tenfold higher dose of human adipose-derived stem cells (ADSCs) were used as an experimental control. Specimens were obtained from the ICH lesions to conduct immunostaining, flow cytometry, and Western blotting to elucidate the underlying mechanisms of the hAMSC treatment. Results The intravenous administration of hAMSCs to the ICH-bearing mice effectively improved their neurobehavioral deficits, particularly when the treatment was initiated at Day 1 after the ICH induction. Of note, the hAMSCs promoted clinical efficacy equivalent to or better than that of hADSCs at 1/10 the cell number. The systemically administered hAMSCs were found in the ICH lesions along with the local accumulation of macrophages/microglia. In detail, the hAMSC treatment decreased the number of CD11b+CD45+ and Ly6G+ cells in the ICH lesions, while splenocytes were not affected. Moreover, the hAMSC treatment decreased the number of apoptotic cells in the ICH lesions. These results were associated with suppression of the protein expression levels of macrophage-related factors iNOS and TNFα. Conclusions Intravenous hAMSC administration during the acute phase would improve ICH-induced neurobehavioral disorders. The underlying mechanism was suggested to be the suppression of subacute inflammation and apoptosis by suppressing macrophage/microglia cell numbers and macrophage functions (such as TNFα and iNOS). From a clinical point of view, hAMSC-based treatment may be a novel strategy for the treatment of ICH. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02411-3.
Collapse
|
7
|
Yang H, Tu Z, Yang D, Hu M, Zhou L, Li Q, Yu B, Hou S. Exosomes from hypoxic pre-treated ADSCs attenuate acute ischemic stroke-induced brain injury via delivery of circ-Rps5 and promote M2 microglia/macrophage polarization. Neurosci Lett 2021; 769:136389. [PMID: 34896256 DOI: 10.1016/j.neulet.2021.136389] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Previous investigations have shown that exosome secretion from hypoxic pre-treated adipose-derived stem cells (ADSCs) affect ischemic injury treatment; however, the therapeutic effect relative to circRNA delivery is unclear. METHODS In the present investigation inflammatory factors, nerve injury, and cognitive function were assessed using a middle cerebral artery occlusion mouse model. The isolated exosomes were identified using transmission electron microscopy and further tested by leveraging exosome particles in a nanoparticle tracking approach. Differences in circRNA expression between exosomes and hypoxic pre-treated ADSC exosomes were analyzed by high-throughput sequencing. The phenotypic transformation of microglia was detected by immunofluorescence. The circRNA and downstream target were analyzed by bioinformatics, RT-qPCR, and luciferase report. RESULTS Exosomes from hypoxic pre-treated ADSCs improved cognitive function by reducing neuronal damage in the hippocampus after cerebral infarction. Exosomes from hypoxic pre-treated ADSCs improved cognitive function via delivery of circ-Rps5. SIRT7 and miR-124-3p were circ-Rps5 downstream targets, which was confirmed by luciferase report analysis. miR-124-3p overexpression or SIRT7 downregulation reversed the circ-Rps5-mediated M2 microglial shift under LPS conditions. Circ-Rps5-modified ADSC exosome improved cognitive function by decreasing neuronal damage and shifting microglia from an M1 to M2 phenotype in the hippocampus. CONCLUSION The study showed that exosomes from hypoxic pre-treated ADSCs attenuated acute ischemic stroke-induced brain injury via delivery of circ-Rps5 and promoted M2 microglia/macrophage polarization.
Collapse
Affiliation(s)
- Hualan Yang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China
| | - Zhilan Tu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China
| | - Dan Yang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China
| | - Mengting Hu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China
| | - Lili Zhou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China
| | - Qinghua Li
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China
| | - Bo Yu
- Department of General Surgery, Shanghai Pudong Hospital, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, China
| | - Shuangxing Hou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China.
| |
Collapse
|
8
|
Yoshida Y, Takagi T, Kuramoto Y, Tatebayashi K, Shirakawa M, Yamahara K, Doe N, Yoshimura S. Intravenous Administration of Human Amniotic Mesenchymal Stem Cells in the Subacute Phase of Cerebral Infarction in a Mouse Model Ameliorates Neurological Disturbance by Suppressing Blood Brain Barrier Disruption and Apoptosis via Immunomodulation. Cell Transplant 2021; 30:9636897211024183. [PMID: 34144647 PMCID: PMC8216398 DOI: 10.1177/09636897211024183] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuro-inflammation plays a key role in the pathophysiology of brain infarction. Cell therapy offers a novel therapeutic option due to its effect on immunomodulatory effects. Amniotic stem cells, in particular, show promise owing to their low immunogenicity, tumorigenicity, and easy availability from amniotic membranes discarded following birth. We have successfully isolated and expanded human amniotic mesenchymal stem cells (hAMSCs). Herein, we evaluated the therapeutic effect of hAMSCs on neurological deficits after brain infarction as well as their immunomodulatory effects in a mouse model in order to understand their mechanisms of action. One day after permanent occlusion of the middle cerebral artery (MCAO), hAMSCs were intravenously administered. RT-qPCR for TNFα, iNOS, MMP2, and MMP9, immunofluorescence staining for iNOS and CD11b/c, and a TUNEL assay were performed 8 days following MCAO. An Evans Blue assay and behavioral tests were performed 2 days and several months following MCAO, respectively. The results suggest that the neurological deficits caused by cerebral infarction are improved in dose-dependent manner by the administration of hAMSCs. The mechanism appears to be through a reduction in disruption of the blood brain barrier and apoptosis in the peri-infarct region through the suppression of pro-inflammatory cytokines and the M2-to-M1 phenotype shift.
Collapse
Affiliation(s)
- Yasunori Yoshida
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Toshinori Takagi
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Yoji Kuramoto
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Kotaro Tatebayashi
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Manabu Shirakawa
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Kenichi Yamahara
- Laboratory of Medical Innovation, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Nobutaka Doe
- Laboratory of Neurogenesis and CNS Repair, 12818, Nishinomiya, Hyogo, Japan.,Laboratory of Psychology, General Education Center, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Shinichi Yoshimura
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| |
Collapse
|
9
|
Progress in Mesenchymal Stem Cell Therapy for Ischemic Stroke. Stem Cells Int 2021; 2021:9923566. [PMID: 34221026 PMCID: PMC8219421 DOI: 10.1155/2021/9923566] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) is a serious cerebrovascular disease with high morbidity and disability worldwide. Despite the great efforts that have been made, the prognosis of patients with IS remains unsatisfactory. Notably, recent studies indicated that mesenchymal stem cell (MSCs) therapy is becoming a novel research hotspot with large potential in treating multiple human diseases including IS. The current article is aimed at reviewing the progress of MSC treatment on IS. The mechanism of MSCs in the treatment of IS involved with immune regulation, neuroprotection, angiogenesis, and neural circuit reconstruction. In addition, nutritional cytokines, mitochondria, and extracellular vesicles (EVs) may be the main mediators of the therapeutic effect of MSCs. Transplantation of MSCs-derived EVs (MSCs-EVs) affords a better neuroprotective against IS when compared with transplantation of MSCs alone. MSC therapy can prolong the treatment time window of ischemic stroke, and early administration within 7 days after stroke may be the best treatment opportunity. The deliver routine consists of intraventricular, intravascular, intranasal, and intraperitoneal. Furthermore, several methods such as hypoxic preconditioning and gene technology could increase the homing and survival ability of MSCs after transplantation. In addition, MSCs combined with some drugs or physical therapy measures also show better neurological improvement. These data supported the notion that MSC therapy might be a promising therapeutic strategy for IS. And the application of new technology will promote MSC therapy of IS.
Collapse
|
10
|
Sungura R, Onyambu C, Mpolya E, Sauli E, Vianney JM. The extended scope of neuroimaging and prospects in brain atrophy mitigation: A systematic review. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2020.100875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Liu S, Liu F, Zhou Y, Jin B, Sun Q, Guo S. Immunosuppressive Property of MSCs Mediated by Cell Surface Receptors. Front Immunol 2020; 11:1076. [PMID: 32849489 PMCID: PMC7399134 DOI: 10.3389/fimmu.2020.01076] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
In the past decade, mesenchymal stem cells (MSCs) tend to exhibit inherent tropism for refractory inflammatory diseases and engineered MSCs have appeared on the market as therapeutic agents. Recently, engineered MSCs target to cell surface molecules on immune cells has been a new strategy to improve MSC applications. In this review, we discuss the roles of multiple receptors (ICAM-1, Gal-9, PD-L1, TIGIT, CD200, and CXCR4) in the process of MSCs' immunosuppressive properties. Furthermore, we discuss the principles and strategies for developing receptor-regulated MSCs and their mechanisms of action and the challenges of using MSCs as immunosuppressive therapies.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Fei Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Baeku Jin
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Tanaka Y, Nakagomi N, Doe N, Nakano-Doi A, Sawano T, Takagi T, Matsuyama T, Yoshimura S, Nakagomi T. Early Reperfusion Following Ischemic Stroke Provides Beneficial Effects, Even After Lethal Ischemia with Mature Neural Cell Death. Cells 2020; 9:cells9061374. [PMID: 32492968 PMCID: PMC7349270 DOI: 10.3390/cells9061374] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is a critical disease caused by cerebral artery occlusion in the central nervous system (CNS). Recent therapeutic advances, such as neuroendovascular intervention and thrombolytic therapy, have allowed recanalization of occluded brain arteries in an increasing number of stroke patients. Although previous studies have focused on rescuing neural cells that still survive despite decreased blood flow, expanding the therapeutic time window may allow more patients to undergo reperfusion in the near future, even after lethal ischemia, which is characterized by death of mature neural cells, such as neurons and glia. However, it remains unclear whether early reperfusion following lethal ischemia results in positive outcomes. The present study used two ischemic mouse models—90-min transient middle cerebral artery occlusion (t-MCAO) paired with reperfusion to induce lethal ischemia and permanent middle cerebral artery occlusion (p-MCAO)—to investigate the effect of early reperfusion up to 8 w following MCAO. Although early reperfusion following 90-min t-MCAO did not rescue mature neural cells, it preserved the vascular cells within the ischemic areas at 1 d following 90-min t-MCAO compared to that following p-MCAO. In addition, early reperfusion facilitated the healing processes, including not only vascular but also neural repair, during acute and chronic periods and improved recovery. Furthermore, compared with p-MCAO, early reperfusion after t-MCAO prevented behavioral symptoms of neurological deficits without increasing negative complications, including hemorrhagic transformation and mortality. These results indicate that early reperfusion provides beneficial effects presumably via cytoprotective and regenerative mechanisms in the CNS, suggesting that it may be useful for stroke patients that experienced lethal ischemia.
Collapse
Affiliation(s)
- Yasue Tanaka
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan; (Y.T.); (T.T.)
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
| | - Nobutaka Doe
- General Education Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan;
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan;
| | - Toshinori Takagi
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan; (Y.T.); (T.T.)
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan; (Y.T.); (T.T.)
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
- Correspondence: (S.Y.); (T.N.); Tel.: +81-798-45-6455 (S.Y.); +81-798-45-6821 (T.N.)
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
- Correspondence: (S.Y.); (T.N.); Tel.: +81-798-45-6455 (S.Y.); +81-798-45-6821 (T.N.)
| |
Collapse
|
13
|
Willing AE, Das M, Howell M, Mohapatra SS, Mohapatra S. Potential of mesenchymal stem cells alone, or in combination, to treat traumatic brain injury. CNS Neurosci Ther 2020; 26:616-627. [PMID: 32157822 PMCID: PMC7248546 DOI: 10.1111/cns.13300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/17/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) causes death and disability in the United States and around the world. The traumatic insult causes the mechanical injury of the brain and primary cellular death. While a comprehensive pathological mechanism of TBI is still lacking, the focus of the TBI research is concentrated on understanding the pathophysiology and developing suitable therapeutic approaches. Given the complexities in pathophysiology involving interconnected immunologic, inflammatory, and neurological cascades occurring after TBI, the therapies directed to a single mechanism fail in the clinical trials. This has led to the development of the paradigm of a combination therapeutic approach against TBI. While there are no drugs available for the treatment of TBI, stem cell therapy has shown promising results in preclinical studies. But, the success of the therapy depends on the survival of the stem cells, which are limited by several factors including route of administration, health of the administered cells, and inflammatory microenvironment of the injured brain. Reducing the inflammation prior to cell administration may provide a better outcome of cell therapy following TBI. This review is focused on different therapeutic approaches of TBI and the present status of the clinical trials.
Collapse
Affiliation(s)
- Alison E Willing
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Mahasweta Das
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Mark Howell
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| |
Collapse
|