1
|
Bai Y, Li L, Dong B, Ma W, Chen H, Yu Y. Phosphorylation‐mediated PI3K‐Art
signalling pathway as a therapeutic mechanism in the
hydrogen‐induced
alleviation of brain injury in septic mice. J Cell Mol Med 2022; 26:5713-5727. [DOI: 10.1111/jcmm.17568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yuanyuan Bai
- Department of Anesthesiology Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University Tianjin China
- Tianjin Research Institute of Anesthesiology Tianjin China
| | - Li Li
- Department of Anesthesiology, Huashan Hospital Fudan University Shanghai China
| | - Beibei Dong
- Department of Anesthesiology Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University Tianjin China
- Tianjin Research Institute of Anesthesiology Tianjin China
| | - Wanjie Ma
- Department of Anesthesiology Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University Tianjin China
- Tianjin Research Institute of Anesthesiology Tianjin China
| | - Hongguang Chen
- Department of Anesthesiology Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University Tianjin China
- Tianjin Research Institute of Anesthesiology Tianjin China
| | - Yonghao Yu
- Department of Anesthesiology Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University Tianjin China
- Tianjin Research Institute of Anesthesiology Tianjin China
| |
Collapse
|
2
|
Miao H, Chen S, Ding R. Evaluation of the Molecular Mechanisms of Sepsis Using Proteomics. Front Immunol 2021; 12:733537. [PMID: 34745104 PMCID: PMC8566982 DOI: 10.3389/fimmu.2021.733537] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a complex syndrome promoted by pathogenic and host factors; it is characterized by dysregulated host responses and multiple organ dysfunction, which can lead to death. However, its underlying molecular mechanisms remain unknown. Proteomics, as a biotechnology research area in the post-genomic era, paves the way for large-scale protein characterization. With the rapid development of proteomics technology, various approaches can be used to monitor proteome changes and identify differentially expressed proteins in sepsis, which may help to understand the pathophysiological process of sepsis. Although previous reports have summarized proteomics-related data on the diagnosis of sepsis and sepsis-related biomarkers, the present review aims to comprehensively summarize the available literature concerning “sepsis”, “proteomics”, “cecal ligation and puncture”, “lipopolysaccharide”, and “post-translational modifications” in relation to proteomics research to provide novel insights into the molecular mechanisms of sepsis.
Collapse
Affiliation(s)
- He Miao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, China
| | - Song Chen
- Department of Trauma Intensive Care Unit, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Yu M, Qin C, Li P, Zhang Y, Wang Y, Zhang J, Li D, Wang H, Lu Y, Xie K, Yu Y, Yu Y. Hydrogen gas alleviates sepsis-induced neuroinflammation and cognitive impairment through regulation of DNMT1 and DNMT3a-mediated BDNF promoter IV methylation in mice. Int Immunopharmacol 2021; 95:107583. [PMID: 33773206 DOI: 10.1016/j.intimp.2021.107583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Sepsis-associated encephalopathy (SAE) can cause acute and long-term cognitive impairment and increase the mortality rate in sepsis patients, and we previously reported that 2% hydrogen gas (H2) inhalation has a therapeutic effect on SAE, but the underlying mechanism remains unclear. Dynamic DNA methylation, which catalyzed by DNA methyltransferases (DNMTs), is involved in the formation of synaptic plasticity and cognitive memory in the central nervous system. And brain-derived neurotrophic factor (BDNF), to be a key signaling component in activity-dependent synaptic plasticity, can be induced by neuronal activity accompanied by hypomethylation of its promoter IV. This study was designed to illustrate whether H2 can mediate SAE by alter the BDNF promoter IV methylation mediated by DNMTs. We established an SAE model by cecal ligation and perforation (CLP) in C57BL/6 mice. The Morris water maze test from the 4th to the 10th day after sham or CLP operations were used to evaluate mouse cognitive function. Hippocampal tissues were isolated at the 24 after sham or CLP surgery. Pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6) and High Mobility Group Box 1 (HMGB1) were measured by enzyme-linked immunosorbent assay (ELISA). mRNA or protein levels of DNMTs (DNMT1, DNMT3a and DNMT3b), BDNF promoter IV and total BDNF were detected by RT-PCR and Western blot tests. Immunofluorescence staining were used to determine the expressions of DNMT1 and DNMT3a. The quantitative methylation analysis of the 11 CpG island of the promoter region of BDNF exon IV was determined using theAgena's MassARRAY EpiTYPER system. We found that 2% H2 inhalation can reduce pro-inflammatory factors, alleviate DNMT1, DNMT3a but not DNMT3b expression, make hypomethylation of BDNF promoter IV at 5 CpG sites, enhance the BDNF levels and then decrease escape latency but increase platform crossing times in septic mice. Our results suggest that 2% H2 inhalation may alleviate SAE through altering the regulation of BDNF promoter IV methylation which mediated by DNMT1 and DNMT3a in the hippocampus of septic mice.
Collapse
Affiliation(s)
- Mingdong Yu
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chao Qin
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Pei Li
- Department of Anesthesiology, Tianjin Hospital, Tianjin 300211, China
| | - Yingli Zhang
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ying Wang
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dedong Li
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Huixing Wang
- Pain Management Center, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yuechun Lu
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yang Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
4
|
Wei F, Ba S, Jin M, Ci R, Wang X, E F, Long Z. RNF180 Inhibits Proliferation and Promotes Apoptosis of Colorectal Cancer Through Ubiquitination of WISP1. Front Cell Dev Biol 2021; 8:623455. [PMID: 33553163 PMCID: PMC7862563 DOI: 10.3389/fcell.2020.623455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths globally and is biologically and clinically heterogeneous. Due to lack of gene expression signatures for risk and prognosis stratification of CRC, identifying novel molecular biomarkers and therapeutic targets may potentially improve CRC prognosis and treatment. RNF180 has been shown to play key contributions to the development of several types of cancers. In the current study, we investigate its role in CRC. In this study, we show that RNF180 expression was significantly downregulated in human CRC tumors and cell lines. Overexpression of RNF180 in CRC cells markedly inhibited cell viability and induced cell apoptosis, while depletion of RNF180 dramatically enhanced cell survival. Moreover, WISP1 was found to be the critical downstream molecule that mediated the tumor suppressive effects of RNF180. Mechanistically, RNF180 ubiquitinated WISP1, resulting in WISP1 downregulation and ultimately leading to suppression of CRC tumor growth in patient-derived xenograft (PDX) mouse models. Last, 5-FU and RNF180 had synergetic effect on the apoptosis induction and tumor growth inhibition. Our findings revealed a crucial role of RNF180 in suppressing tumor growth by ubiquitinating WISP1 in CRC.
Collapse
Affiliation(s)
- Feng Wei
- Department of Surgery, Shigatse People's Hospital, Shigatse, China
| | - Sang Ba
- Department of Surgery, Shigatse People's Hospital, Shigatse, China
| | - Mei Jin
- Department of Surgery, Shigatse People's Hospital, Shigatse, China
| | - Ren Ci
- Department of Surgery, Shigatse People's Hospital, Shigatse, China
| | - Xuelian Wang
- Department of Surgery, Shigatse People's Hospital, Shigatse, China
| | - Fusheng E
- Department of Surgery, Shigatse People's Hospital, Shigatse, China
| | - Ziwen Long
- Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Jiang Y, Bian Y, Lian N, Wang Y, Xie K, Qin C, Yu Y. iTRAQ-Based Quantitative Proteomic Analysis of Intestines in Murine Polymicrobial Sepsis with Hydrogen Gas Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4885-4900. [PMID: 33209018 PMCID: PMC7670176 DOI: 10.2147/dddt.s271191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Objective Sepsis-associated intestinal injury has a higher morbidity and mortality in patients with sepsis, but there is still no effective treatment. Our research team has proven that inhaling 2% hydrogen gas (H2) can effectively improve sepsis and related organ damage, but the specific molecular mechanism of its role is not clear. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics analysis was used for studying the effect of H2 on intestinal injury in sepsis. Methods Male C57BL/6J mice were used to prepare a sepsis model by cecal ligation and puncture (CLP). The 7-day survival rates of mice were measured. 4-kd fluorescein isothiocyanate-conjugated Dextran (FITC-dextran) blood concentration measurement, combined with hematoxylin-eosinstain (HE) staining and Western blotting, was used to study the effect of H2 on sepsis-related intestinal damage. iTRAQ-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was used for studying the proteomics associated with H2 for the treatment of intestinal injury. Results H2 can significantly improve the 7-day survival rates of sepsis mice. The load of blood and peritoneal lavage bacteria was increased, and H2 treatment can significantly reduce it. CLP mice had significant intestinal damage, and inhalation of 2% hydrogen could significantly reduce this damage. All 4194 proteins were quantified, of which 199 differentially expressed proteins were associated with the positive effect of H2 on sepsis. Functional enrichment analysis indicated that H2 may reduce intestinal injury in septic mice through the effects of thyroid hormone synthesis and nitrogen metabolism signaling pathway. Western blot showed that H2 was reduced by down-regulating the expressions of deleted in malignant brain tumors 1 protein (DMBT1), insulin receptor substrate 2 (IRS2), N-myc downregulated gene 1 (NDRG1) and serum amyloid A-1 protein (SAA1) intestinal damage in sepsis mice. Conclusion A total of 199 differential proteins were related with H2 in the intestinal protection of sepsis. H2-related differential proteins were notably enriched in the following signaling pathways, including thyroid hormone synthesis signaling pathway, nitrogen metabolism signaling pathways, digestion and absorption signaling pathways (vitamins, proteins and fats). H2 reduced intestinal injury in septic mice by down-regulating the expressions of SAA1, NDRG1, DMBT1 and IRS2.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Yingxue Bian
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Naqi Lian
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Yaoqi Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Chao Qin
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| |
Collapse
|