1
|
Beshir SA, Hussain N, Menon VB, Al Haddad AHI, Al Zeer RAK, Elnour AA. Advancements and Challenges in Antiamyloid Therapy for Alzheimer's Disease: A Comprehensive Review. Int J Alzheimers Dis 2024; 2024:2052142. [PMID: 39081336 PMCID: PMC11288696 DOI: 10.1155/2024/2052142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/20/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder caused by the accumulation of amyloid-beta (Aβ) proteins and neurofibrillary tangles in the brain. There have been recent advancements in antiamyloid therapy for AD. This narrative review explores the recent advancements and challenges in antiamyloid therapy. In addition, a summary of evidence from antiamyloid therapy trials is presented with a focus on lecanemab. Lecanemab is the most recently approved monoclonal antibody that targets Aβ protofibrils for the treatment of patients with early AD and mild cognitive impairment (MCI). Lecanemab was the first drug shown to slow cognitive decline in patients with MCI or early onset AD dementia when administered as an infusion once every two weeks. In the Clarity AD trial, lecanemab was associated with infusion-site reactions (26.4%) and amyloid-related imaging abnormalities (12.6%). The clinical relevance and long-term side effects of lecanemab require further longitudinal observation. However, several challenges must be addressed before the drug can be routinely used in clinical practice. The drug's route of administration, need for imaging and genetic testing, affordability, accessibility, infrastructure, and potential for serious side effects are some of these challenges. Lecanemab's approval has fueled interest in the potential of other antiamyloid therapies, such as donanemab. Future research must focus on developing strategies to prevent AD; identify easy-to-use validated plasma-based assays; and discover newer user-friendly, and cost-effective drugs that target multiple pathways in AD pathology.
Collapse
Affiliation(s)
- Semira Abdi Beshir
- Department of Pharmacy PracticeDubai Pharmacy College for Girls, Dubai, UAE
| | - Nadia Hussain
- Department of Pharmaceutical SciencesCollege of PharmacyAl Ain University, Al Ain, UAE
- AAU Health and Biomedical Research CentreAl Ain University, Abu Dhabi, UAE
| | | | - Amal H. I. Al Haddad
- Chief Operations OfficeSheikh Shakhbout Medical City (SSMC)PureHealth, Abu Dhabi, UAE
| | | | - Asim Ahmed Elnour
- AAU Health and Biomedical Research CentreAl Ain University, Abu Dhabi, UAE
- College of PharmacyAl Ain UniversityAbu Dhabi Campus, Abu Dhabi, UAE
| |
Collapse
|
2
|
Yang Y, Seok MJ, Kim YE, Choi Y, Song JJ, Sulistio YA, Kim SH, Chang MY, Oh SJ, Nam MH, Kim YK, Kim TG, Im HI, Koh SH, Lee SH. Adeno-associated virus (AAV) 9-mediated gene delivery of Nurr1 and Foxa2 ameliorates symptoms and pathologies of Alzheimer disease model mice by suppressing neuro-inflammation and glial pathology. Mol Psychiatry 2023; 28:5359-5374. [PMID: 35902630 DOI: 10.1038/s41380-022-01693-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/30/2022] [Indexed: 12/16/2022]
Abstract
There is a compelling need to develop disease-modifying therapies for Alzheimer's disease (AD), the most common neuro-degenerative disorder. Together with recent progress in vector development for efficiently targeting the central nervous system, gene therapy has been suggested as a potential therapeutic modality to overcome the limited delivery of conventional types of drugs to and within the damaged brain. In addition, given increasing evidence of the strong link between glia and AD pathophysiology, therapeutic targets have been moving toward those addressing glial cell pathology. Nurr1 and Foxa2 are transcription/epigenetic regulators that have been reported to cooperatively regulate inflammatory and neurotrophic response in glial cells. In this study, we tested the therapeutic potential of Nurr1 and Foxa2 gene delivery to treat AD symptoms and pathologies. A series of functional, histologic, and transcriptome analyses revealed that the combined expression of Nurr1 and Foxa2 substantially ameliorated AD-associated amyloid β and Tau proteinopathy, cell senescence, synaptic loss, and neuro-inflammation in multiple in vitro and in vivo AD models. Intra-cranial delivery of Nurr1 and Foxa2 genes using adeno-associated virus (AAV) serotype 9 improved the memory and cognitive function of AD model mice. The therapeutic benefits of gene delivery were attained mainly by correcting pathologic glial function. These findings collectively indicate that AAV9-mediated Nurr1 and Foxa2 gene transfer could be an effective disease-modifying therapy for AD.
Collapse
Affiliation(s)
- Yunseon Yang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Min-Jong Seok
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Ye Eun Kim
- Department of Neurology, Hanyang University Guri Hospital, Hangyang University College of Medicine, Guri, Republic of Korea
- Graduate School of Translational Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yunjung Choi
- Convergence Research Center for Brain Science, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Jin Song
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Seong-Hoon Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Mi-Yoon Chang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yun Kyung Kim
- Convergence Research Center for Brain Science, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Med, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Tae-Gyun Kim
- Innopeutics Corporation, Seoul, Republic of Korea
| | - Heh-In Im
- Convergence Research Center for Brain Science, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Bio-Med, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea.
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Hangyang University College of Medicine, Guri, Republic of Korea.
| | - Sang-Hun Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea.
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Stanciu GD, Ababei DC, Rusu RN, Bild V, Tamba BI. Exploring the Involvement of the Amyloid Precursor Protein A673T Mutation against Amyloid Pathology and Alzheimer's Disease in Relation to Therapeutic Editing Tools. Pharmaceutics 2022; 14:1270. [PMID: 35745842 PMCID: PMC9228826 DOI: 10.3390/pharmaceutics14061270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is biologically defined as a complex neurodegenerative condition with a multilayered nature that leads to a progressive decline in cognitive function and irreversible neuronal loss. It is one of the primary diseases among elderly individuals. With an increasing incidence and a high failure rate for pharmaceutical options that are merely symptom-targeting and supportive with many side effects, there is an urgent need for alternative strategies. Despite extensive knowledge on the molecular basis of AD, progress concerning effective disease-modifying therapies has proven to be a challenge. The ability of the CRISPR-Cas9 gene editing system to help identify target molecules or to generate new preclinical disease models could shed light on the pathogenesis of AD and provide promising therapeutic possibilities. Here, we sought to highlight the current understanding of the involvement of the A673T mutation in amyloid pathology, focusing on its roles in protective mechanisms against AD, in relation to the recent status of available therapeutic editing tools.
Collapse
Affiliation(s)
- Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (B.-I.T.)
| | - Daniela Carmen Ababei
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.N.R.); (V.B.)
| | - Razvan Nicolae Rusu
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.N.R.); (V.B.)
| | - Veronica Bild
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.N.R.); (V.B.)
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (B.-I.T.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
4
|
Identification of potential therapeutic and diagnostic characteristics of Alzheimer disease by targeting the miR-132-3p/FOXO3a-PPM1F axis in APP/PS1 mice. Brain Res 2022; 1790:147983. [PMID: 35709892 DOI: 10.1016/j.brainres.2022.147983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder, which is characterized by progressive impairment of memory and cognition. Early diagnosis and treatment of AD has become a leading topic of research. In this study, we explored the effects of the miR-132-3p/FOXO3a-PPM1F axis on the onset of AD for possible early diagnosis and therapy. We found that miR-132-3p levels in the hippocampus and blood were drastically decreased in APP/PS1 mice from 9 months of age, and bi-directional manipulation of miR-132-3p levels induced magnified effects on learning memory behaviors, and manifestation of AD-related pathological characteristics and inflammatory cytokines in APP/PS1 mice of relevant ages. The hippocampal PPM1F expression levels were significantly elevated in APP/PS1 mice from 3 months of age, which was correlated with miR-132-3p levels at different ages. Overexpression of PPM1F remarkably accelerated the progression of learning memory deficits and associated pathological factors in APP/PS1 mice. Further, we showed that miR-132-3p modulated the expression of PPM1F via FOXO3a in HT22 cells. Finally, using peripheral blood samples of human study participants, we found that the miR-132-3p and PPM1F expression levels in patients with AD were also altered with prominent correlations. In conclusion, miR-132-3p indirectly regulates PPM1F expression by targeting FOXO3a, which could play an extensive role in contributing to the establishment of early diagnosis, treatment, and pathogenesis of AD.
Collapse
|