1
|
Herder C, Thorand B, Strom A, Rathmann W, Heier M, Koenig W, Morrison H, Ziegler D, Roden M, Peters A, Bönhof GJ, Maalmi H. Associations between multiple neurological biomarkers and distal sensorimotor polyneuropathy: KORA F4/FF4 study. Diabetes Metab Res Rev 2024; 40:e3807. [PMID: 38872492 DOI: 10.1002/dmrr.3807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024]
Abstract
AIMS The aim of this study was to assess associations between neurological biomarkers and distal sensorimotor polyneuropathy (DSPN). MATERIALS AND METHODS Cross-sectional analyses were based on 1032 participants aged 61-82 years from the population-based KORA F4 survey, 177 of whom had DSPN at baseline. The prevalence of type 2 diabetes was 20%. Prospective analyses used data from 505 participants without DSPN at baseline, of whom 125 had developed DSPN until the KORA FF4 survey. DSPN was defined based on the examination part of the Michigan Neuropathy Screening Instrument. Serum levels of neurological biomarkers were measured using proximity extension assay technology. Associations between 88 biomarkers and prevalent or incident DSPN were estimated using Poisson regression with robust error variance and are expressed as risk ratios (RR) and 95% CI per 1-SD increase. Results were adjusted for multiple confounders and multiple testing using the Benjamini-Hochberg procedure. RESULTS Higher serum levels of CTSC (cathepsin C; RR [95% CI] 1.23 (1.08; 1.39), pB-H = 0.044) and PDGFRα (platelet-derived growth factor receptor A; RR [95% CI] 1.21 (1.08; 1.35), pB-H = 0.044) were associated with prevalent DSPN in the total study sample. CDH3, JAM-B, LAYN, RGMA and SCARA5 were positively associated with DSPN in the diabetes subgroup, whereas GCP5 was positively associated with DSPN in people without diabetes (all pB-H for interaction <0.05). None of the biomarkers showed an association with incident DSPN (all pB-H>0.05). CONCLUSIONS This study identified multiple novel associations between neurological biomarkers and prevalent DSPN, which may be attributable to functions of these proteins in neuroinflammation, neural development and myelination.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Diabetes Research (DZD), Partner Neuherberg, Partner Düsseldorf, Munich, Germany
- Institute for Medical Information Processing Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
| | - Wolfgang Rathmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- KORA Study Centre, University Hospital of Augsburg, Augsburg, Germany
| | - Wolfgang Koenig
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site München Heart Alliance, Munich, Germany
| | - Helen Morrison
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Diabetes Research (DZD), Partner Neuherberg, Partner Düsseldorf, Munich, Germany
- Institute for Medical Information Processing Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Haifa Maalmi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
| |
Collapse
|
2
|
Andrade Mier MS, Bakirci E, Stahlhut P, Blum R, Dalton PD, Villmann C. Primary Glial Cell and Glioblastoma Morphology in Cocultures Depends on Scaffold Design and Hydrogel Composition. Adv Biol (Weinh) 2023; 7:e2300029. [PMID: 37017512 DOI: 10.1002/adbi.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Indexed: 04/06/2023]
Abstract
3D cell cultures better replicate the in vivo environment compared to 2D models. Glioblastoma multiforme, a malignant brain tumor, highly profits from its cellular environment. Here, the U87 glioblastoma cell line in the presence/absence of primary astrocytes is studied. Thiolated hyaluronic acid (HA-SH) hydrogel reinforced with microfiber scaffolds is compared to Matrigel. Hyaluronic acid is a major extracellular matrix (ECM) component in the brain. Poly(ɛ-caprolactone) (PCL) scaffolds are written by meltelectrowriting in a box and triangular shaped design with pore sizes of 200 µm. Scaffolds are composed of 10-layers of PCL microfibers. It is found that scaffold design has an impact on cellular morphology in the absence of hydrogel. Moreover, the used hydrogels have profound influences on cellular morphology resulting in spheroid formation in HA-SH for both the tumor-derived cell line and astrocytes, while cell viability is high. Although cocultures of U87 and astrocytes exhibit cell-cell interactions, polynucleated spheroid formation is still present for U87 cells in HA-SH. Locally restricted ECM production or inability to secrete ECM proteins may underlie the observed cell morphologies. Thus, the 3D reinforced PCL-HA-SH composite with glioma-like cells and astrocytes constitutes a reproducible system to further investigate the impact of hydrogel modifications on cellular behavior and development.
Collapse
Affiliation(s)
- Mateo S Andrade Mier
- Institute for Clinical Neurobiology, University Hospital Würzburg, Versbacherstr. 5, 97078, Würzburg, Germany
| | - Ezgi Bakirci
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Paul D Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd, Eugene, OR, 97403, USA
| | - Carmen Villmann
- Institute for Clinical Neurobiology, University Hospital Würzburg, Versbacherstr. 5, 97078, Würzburg, Germany
| |
Collapse
|
3
|
Lin Q, Hu DW, Hao XH, Zhang G, Lin L. Effect of Hypoxia-Ischemia on the Expression of Iron-Related Proteins in Neonatal Rat Brains. Neural Plast 2023; 2023:4226139. [PMID: 37124874 PMCID: PMC10139812 DOI: 10.1155/2023/4226139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Hypoxic-ischemic white matter injury (WMI) pathogenesis in preterm infants is not well established, and iron-related proteins in the brain may play an important role in imbalanced iron metabolism. We aimed to investigate the iron-related protein changes in neonatal rats after hypoxia-ischemia (HI), clarify the role of iron-related proteins in hypoxic-ischemic WMI, and potentially provide a new target for the clinical treatment of hypoxic-ischemic WMI in preterm infants. We adopted a WMI animal model of bilateral common carotid artery electrocoagulation combined with hypoxia in neonatal 3-day-old Sprague-Dawley rats. We observed basic myelin protein (MBP) and iron-related protein expression in the brain (ferritin, transferrin receptor [TfR], and membrane iron transporter 1 [FPN1]) via Western blot and double immunofluorescence staining. The expression of MBP in the WMI group was significantly downregulated on postoperative days (PODs) 14, 28, and 56. Ferritin levels were significantly increased on PODs 3, 7, 14, and 28 and were most significant on POD 28, returning to the sham group level on POD 56. FPN1 levels were significantly increased on PODs 7, 28, and 56 and were still higher than those in the sham group on POD 56. TfR expression was significantly upregulated on PODs 1, 7, and 28 and returned to the sham group level on POD 56. Immunofluorescence staining showed that ferritin, TfR, and FPN1 were expressed in neurons, blood vessels, and oligodendrocytes in the cortex and corpus callosum on POD 28. Compared with the sham group, the immune-positive markers of three proteins in the WMI group were significantly increased. The expression of iron-related proteins in the brain (ferritin, FPN1, and TfR) showed spatiotemporal dynamic changes and may play an important role in hypoxic-ischemic WMI.
Collapse
Affiliation(s)
- Qing Lin
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Ding-Wang Hu
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Xin-Hui Hao
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Geng Zhang
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Ling Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
4
|
Lainé A, Brot S, Gaillard A. Beneficial Effects of Hyaluronan-Based Hydrogel Implantation after Cortical Traumatic Injury. Cells 2022; 11:cells11233831. [PMID: 36497093 PMCID: PMC9735891 DOI: 10.3390/cells11233831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Traumatic brain injury (TBI) causes cell death mainly in the cerebral cortex. We have previously reported that transplantation of embryonic cortical neurons immediately after cortical injury allows the anatomical reconstruction of injured pathways and that a delay between cortical injury and cell transplantation can partially improve transplantation efficiency. Biomaterials supporting repair processes in combination with cell transplantation are in development. Hyaluronic acid (HA) hydrogel has attracted increasing interest in the field of tissue engineering due to its attractive biological properties. However, before combining the cell with the HA hydrogel for transplantation, it is important to know the effects of the implanted hydrogel alone. Here, we investigated the therapeutic effect of HA on host tissue after a cortical trauma. For this, we implanted HA hydrogel into the lesioned motor cortex of adult mice immediately or one week after a lesion. Our results show the vascularization of the implanted hydrogel. At one month after HA implantation, we observed a reduction in the glial scar around the lesion and the presence of the newly generated oligodendrocytes, immature and mature neurons within the hydrogel. Implanted hydrogel provides favorable environments for the survival and maturation of the newly generated neurons. Collectively, these results suggest a beneficial effect of biomaterial after a cortical traumatic injury.
Collapse
|
5
|
Abi-Ghanem C, Jonnalagadda D, Chun J, Kihara Y, Ranscht B. CAQK, a peptide associating with extracellular matrix components targets sites of demyelinating injuries. Front Cell Neurosci 2022; 16:908401. [PMID: 36072569 PMCID: PMC9441496 DOI: 10.3389/fncel.2022.908401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
The destruction of the myelin sheath that encircles axons leads to impairments of nerve conduction and neuronal dysfunctions. A major demyelinating disorder is multiple sclerosis (MS), a progressively disabling disease in which immune cells attack the myelin. To date, there are no therapies to target selectively myelin lesions, repair the myelin or stop MS progression. Small peptides recognizing epitopes selectively exposed at sites of injury show promise for targeting therapeutics in various pathologies. Here we show the selective homing of the four amino acid peptide, cysteine-alanine-lysine glutamine (CAQK), to sites of demyelinating injuries in three different mouse models. Homing was assessed by administering fluorescein amine (FAM)-labeled peptides into the bloodstream of mice and analyzing sites of demyelination in comparison with healthy brain or spinal cord tissue. FAM-CAQK selectively targeted demyelinating areas in all three models and was absent from healthy tissue. At lesion sites, the peptide was primarily associated with the fibrous extracellular matrix (ECM) deposited in interstitial spaces proximal to reactive astrocytes. Association of FAM-CAQK was detected with tenascin-C although tenascin depositions made up only a minor portion of the examined lesion sites. In mice on a 6-week cuprizone diet, FAM-CAQK peptide crossed the nearly intact blood-brain barrier and homed to demyelinating fiber tracts. These results demonstrate the selective targeting of CAQK to demyelinating injuries under multiple conditions and confirm the previously reported association with the ECM. This work sets the stage for further developing CAQK peptide targeting for diagnostic and therapeutic applications aimed at localized myelin repair.
Collapse
|
6
|
Sato T, Shirai R, Isogai M, Yamamoto M, Miyamoto Y, Yamauchi J. Hyaluronic acid and its receptor CD44, acting through TMEM2, inhibit morphological differentiation in oligodendroglial cells. Biochem Biophys Res Commun 2022; 624:102-111. [DOI: 10.1016/j.bbrc.2022.07.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/28/2022]
|
7
|
Studzińska-Sroka E, Majchrzak-Celińska A, Zalewski P, Szwajgier D, Baranowska-Wójcik E, Kaproń B, Plech T, Żarowski M, Cielecka-Piontek J. Lichen-Derived Compounds and Extracts as Biologically Active Substances with Anticancer and Neuroprotective Properties. Pharmaceuticals (Basel) 2021; 14:ph14121293. [PMID: 34959693 PMCID: PMC8704315 DOI: 10.3390/ph14121293] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023] Open
Abstract
Lichens are a source of chemical compounds with valuable biological properties, structurally predisposed to penetration into the central nervous system (CNS). Hence, our research aimed to examine the biological potential of lipophilic extracts of Parmelia sulcata, Evernia prunastri, Cladonia uncialis, and their major secondary metabolites, in the context of searching for new therapies for CNS diseases, mainly glioblastoma multiforme (GBM). The extracts selected for the study were standardized for their content of salazinic acid, evernic acid, and (−)-usnic acid, respectively. The extracts and lichen metabolites were evaluated in terms of their anti-tumor activity, i.e., cytotoxicity against A-172 and T98G cell lines and anti-IDO1, IDO2, TDO activity, their anti-inflammatory properties exerted by anti-COX-2 and anti-hyaluronidase activity, antioxidant activity, and anti-acetylcholinesterase and anti-butyrylcholinesterase activity. The results of this study indicate that lichen-derived compounds and extracts exert significant cytotoxicity against GBM cells, inhibit the kynurenine pathway enzymes, and have anti-inflammatory properties and weak antioxidant and anti-cholinesterase properties. Moreover, evernic acid and (−)-usnic acid were shown to be able to cross the blood-brain barrier. These results demonstrate that lichen-derived extracts and compounds, especially (−)-usnic acid, can be regarded as prototypes of pharmacologically active compounds within the CNS, especially suitable for the treatment of GBM.
Collapse
Affiliation(s)
- Elżbieta Studzińska-Sroka
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland; (P.Z.); (J.C.-P.)
- Correspondence:
| | - Aleksandra Majchrzak-Celińska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland; (P.Z.); (J.C.-P.)
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland; (P.Z.); (J.C.-P.)
| |
Collapse
|