1
|
Sun J, Wang W, Ma Q, Pan X, Zhai H, Wang J, Han Y, Li Y, Wang Y. Necrostatin-1s Suppresses RIPK1-driven Necroptosis and Inflammation in Periventricular Leukomalacia Neonatal Mice. Neurochem Res 2024; 49:129-141. [PMID: 37642893 DOI: 10.1007/s11064-023-04013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Periventricular leukomalacia (PVL), a predominant form of brain injury in preterm survivors, is characterized by hypomyelination and microgliosis and is also the major cause of long-term neurobehavioral abnormalities in premature infants. Receptor-interacting protein kinase 1 (RIPK1) plays a pivotal role in mediating cell death and inflammatory signaling cascade. However, very little is known about the potential effect of RIPK1 in PVL and the underlying mechanism. Herein, we found that the expression level of RIPK1 was drastically increased in the brain of PVL neonatal mice models, and treatment of PVL neonatal mice with Necrostatin-1s (Nec-1s), an inhibitor of RIPK1, greatly ameliorated cerebral ischemic injury, exhibiting an increase of body weights, reduction of cerebral infarct size, neuronal loss, and occurrence of necrosis-like cells, and significantly improved the long-term abnormal neurobehaviors of PVL. In addition, Nec-1s significantly suppressed hypomyelination and promoted the differentiation of oligodendrocyte precursor cells (OPCs), as demonstrated by the increased expression levels of MBP and Olig2, the decreased expression level of GPR17, a significant increase in the number of CC-1-positive cells, and suppression of myelin ultrastructure impairment. Moreover, the mechanism of neuroprotective effects of Nec-1s against PVL is closely associated with its suppression of the RIPK1-mediated necrosis signaling molecules, RIPK1, PIPK3, and MLKL. More importantly, inhibition of RIPK1 could reduce microglial inflammatory injury by triggering the M1 to M2 microglial phenotype, appreciably decreasing the levels of M1 marker CD86 and increasing the levels of M2 markers Arg1 or CD206 in PVL mice. Taken together, inhibition of RIPK1 markedly ameliorates the brain injury and long-term neurobehavioral abnormalities of PVL mice through the reduction of neural cell necroptosis and reversing neuroinflammation.
Collapse
Affiliation(s)
- Jinping Sun
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Wei Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Quanrui Ma
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Xiaoli Pan
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Hualiang Zhai
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Junyan Wang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Yong Han
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Yunhong Li
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China.
| | - Yin Wang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China.
| |
Collapse
|
2
|
Zhao Y, Liu X, Yang G. Adenosinergic Pathway in Parkinson's Disease: Recent Advances and Therapeutic Perspective. Mol Neurobiol 2023; 60:3054-3070. [PMID: 36786912 DOI: 10.1007/s12035-023-03257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized pathologically by α-synuclein (α-syn) aggregation. In PD, the current mainstay of symptomatic treatment is levodopa (L-DOPA)-based dopamine (DA) replacement therapy. However, the development of dyskinesia and/or motor fluctuations which is relevant to levodopa is restricting its long-term utility. Given that the ability of which is to modulate the striato-thalamo-cortical loops and function to modulate basal ganglia output, the adenosinergic pathway (AP) is qualified as a potential promising non-DA target. As an indispensable component of energy production pathways, AP modulates cellular metabolism and gene regulation in both neurons and neuroglia cells through the recognition and degradation of extracellular adenosine. In addition, AP is geared to the initiation, evolution, and resolution of inflammation as well. Besides the above-mentioned crosstalk between the adenosine and dopamine signaling pathways, the functions of adenosine receptors (A1R, A2AR, A2BR, and A3R) and metabolism enzymes in modulating PD pathological process have been extensively investigated in recent decades. Here we reviewed the emerging findings focused on the function of adenosine receptors, adenosine formation, and metabolism in the brain and discussed its potential roles in PD pathological process. We also recapitulated clinical studies and the preclinical evidence for the medical strategies targeting the Ado signaling pathway to improve motor dysfunction and alleviate pathogenic process in PD. We hope that further clinical studies should consider this pathway in their monotherapy and combination therapy, which would open new vistas to more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Xin Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Guofeng Yang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China. .,Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
3
|
Ma Q, Wang D, Li Y, Yang H, Li Y, Wang J, Li J, Sun J, Liu J. Activation of A 2B adenosine receptor protects against demyelination in a mouse model of schizophrenia. Exp Ther Med 2022; 23:396. [PMID: 35495590 PMCID: PMC9047022 DOI: 10.3892/etm.2022.11323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/24/2022] [Indexed: 11/11/2022] Open
Abstract
The purpose of the present study was to explore the effects of A2B adenosine receptor (A2BAR) on learning, memory and demyelination in a dizocilpine maleate (MK-801)-induced mouse model of schizophrenia (SCZ). BAY 60-6583, an agonist of A2BAR, or PSB 603, an antagonist of A2BAR, was used to treat SCZ in this model. The Morris Water Maze (MWM) was utilized to determine changes in cognitive function. Moreover, western blotting, immunohistochemistry and immunofluorescence were conducted to investigate the myelination and oligodendrocyte (OL) alterations at differentiation and maturation stages. The MWM results showed that learning and memory were impaired in SCZ mice, while subsequent treatment with BAY 60-6583 alleviated these impairments. In addition, western blot analysis revealed that myelin basic protein (MBP) and chondroitin sulphate proteoglycan 4 (NG2) expression levels were significantly decreased in MK-801-induced mice, while the expression of G protein-coupled receptor 17 (GPR17) was increased. Additionally, the number of anti-adenomatous polyposis coli clone CC-1/OL transcription factor 2 (CC-1+/Olig2+) cells was also decreased. Notably, BAY 60-6583 administration could reverse these changes, resulting in a significant increase in MBP and NG2 protein expression, and in the number of CC-1+/Olig2+ cells, while GPR17 protein expression levels were decreased. The present study indicated that the selective activation of A2BAR using BAY 60-6583 could improve the impaired learning and memory of SCZ mice, as well as protect the myelin sheath from degeneration by regulating the survival and maturation of OLs.
Collapse
Affiliation(s)
- Quanrui Ma
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Dan Wang
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yunhong Li
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hao Yang
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yilu Li
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Junyan Wang
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jinxia Li
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jinping Sun
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Juan Liu
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|