1
|
Chuang KH, Qian C, Gilad AA, Pelled G. Magnetogenetic stimulation inside MRI induces spontaneous and evoked changes in neural circuits activity in rats. Front Neurosci 2024; 18:1459120. [PMID: 39411150 PMCID: PMC11473493 DOI: 10.3389/fnins.2024.1459120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The ability to modulate specific neural circuits and simultaneously visualize and measure brain activity with MRI would greatly impact our understanding of brain function in health and disease. The combination of neurostimulation methods and functional MRI in animal models have already shown promise in elucidating fundamental mechanisms associated with brain activity. We developed an innovative magnetogenetics neurostimulation technology that can trigger neural activity through magnetic fields. Similar to other genetic-based neuromodulation methods, magnetogenetics offers cell-, area-, and temporal-specific control of neural activity. The magnetogenetic protein-Electromagnetic Perceptive Gene (EPG)-is activated by non-invasive magnetic fields, providing a unique way to target neural circuits by the MRI static and gradient fields while simultaneously measuring their effect on brain activity. EPG was expressed in rat's visual cortex and the amplitude of low-frequency fluctuation, resting-state functional connectivity (FC), and sensory activation was measured using a 7T MRI. The results demonstrate that EPG-expressing rats had significantly higher signal fluctuations in the visual areas and stronger FC in sensory areas consistent with known anatomical visuosensory and visuomotor connections. This new technology complements the existing neurostimulation toolbox and provides a means to study brain function in a minimally-invasive way which was not possible previously.
Collapse
Affiliation(s)
- Kai-Hsiang Chuang
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - Assaf A. Gilad
- Department of Radiology, Michigan State University, East Lansing, MI, United States
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Radiology, Michigan State University, East Lansing, MI, United States
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
Ricker B, Castellanos Franco EA, de los Campos G, Pelled G, Gilad AA. A conserved phenylalanine motif among teleost fish provides insight for improving electromagnetic perception. Open Biol 2024; 14:240092. [PMID: 39043226 PMCID: PMC11265860 DOI: 10.1098/rsob.240092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Magnetoreceptive biology as a field remains relatively obscure; compared with the breadth of species believed to sense magnetic fields, it remains under-studied. Here, we present grounds for the expansion of magnetoreception studies among teleosts. We begin with the electromagnetic perceptive gene (EPG) from Kryptopterus vitreolus and expand to identify 72 teleosts with homologous proteins containing a conserved three-phenylalanine (3F) motif. Phylogenetic analysis provides insight as to how EPG may have evolved over time and indicates that certain clades may have experienced a loss of function driven by different fitness pressures. One potential factor is water type with freshwater fish significantly more likely to possess the functional motif version (FFF), and saltwater fish to have the non-functional variant (FXF). It was also revealed that when the 3F motif from the homologue of Brachyhypopomus gauderio (B.g.) is inserted into EPG-EPG(B.g.)-the response (as indicated by increased intracellular calcium) is faster. This indicates that EPG has the potential to be engineered to improve upon its response and increase its utility to be used as a controller for specific outcomes.
Collapse
Affiliation(s)
- Brianna Ricker
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Gustavo de los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA
| | - Galit Pelled
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Assaf A. Gilad
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Latypova AA, Yaremenko AV, Pechnikova NA, Minin AS, Zubarev IV. Magnetogenetics as a promising tool for controlling cellular signaling pathways. J Nanobiotechnology 2024; 22:327. [PMID: 38858689 PMCID: PMC11163773 DOI: 10.1186/s12951-024-02616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Magnetogenetics emerges as a transformative approach for modulating cellular signaling pathways through the strategic application of magnetic fields and nanoparticles. This technique leverages the unique properties of magnetic nanoparticles (MNPs) to induce mechanical or thermal stimuli within cells, facilitating the activation of mechano- and thermosensitive proteins without the need for traditional ligand-receptor interactions. Unlike traditional modalities that often require invasive interventions and lack precision in targeting specific cellular functions, magnetogenetics offers a non-invasive alternative with the capacity for deep tissue penetration and the potential for targeting a broad spectrum of cellular processes. This review underscores magnetogenetics' broad applicability, from steering stem cell differentiation to manipulating neuronal activity and immune responses, highlighting its potential in regenerative medicine, neuroscience, and cancer therapy. Furthermore, the review explores the challenges and future directions of magnetogenetics, including the development of genetically programmed magnetic nanoparticles and the integration of magnetic field-sensitive cells for in vivo applications. Magnetogenetics stands at the forefront of cellular manipulation technologies, offering novel insights into cellular signaling and opening new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Anastasiia A Latypova
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia
- Moscow Center for Advanced Studies, Moscow, 123592, Russia
| | - Alexey V Yaremenko
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Nadezhda A Pechnikova
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Saint Petersburg Pasteur Institute, Saint Petersburg, 197101, Russia
| | - Artem S Minin
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russia
| | - Ilya V Zubarev
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia.
| |
Collapse
|
4
|
Ricker B, Castellanos Franco EA, de los Campos G, Pelled G, Gilad AA. A conserved phenylalanine motif among Teleost fish provides insight for improving electromagnetic perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588096. [PMID: 38617371 PMCID: PMC11014636 DOI: 10.1101/2024.04.04.588096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Magnetoreceptive biology as a field remains relatively obscure; compared to the breadth of species believed to sense magnetic fields, it remains under-studied. Here, we present grounds for the expansion of magnetoreception studies among Teleosts. We begin with the electromagnetic perceptive gene (EPG) from Kryptopterus vitreolus and expand to identify 72 Teleosts with homologous proteins containing a conserved three-phenylalanine (3F) motif. Phylogenetic analysis provides insight as to how EPG may have evolved over time, and indicates that certain clades may have experienced a loss of function driven by different fitness pressures. One potential factor is water type with freshwater fish significantly more likely to possess the functional motif version (FFF), and saltwater fish to have the non-functional variant (FXF). It was also revealed that when the 3F motif from the homolog of Brachyhypopomus gauderio (B.g.) is inserted into EPG - EPG(B.g.) - the response (as indicated by increased intracellular calcium) is faster. This indicates that EPG has the potential to be engineered to improve upon its response and increase its utility to be used as a controller for specific outcomes.
Collapse
Affiliation(s)
- Brianna Ricker
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing MI, USA
| | | | - Gustavo de los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI, USA
- Department of Statistics and Probability, Michigan State University, East Lansing MI, USA
| | - Galit Pelled
- Department of Mechanical Engineering, Michigan State University, East Lansing MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Assaf A. Gilad
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Grady CJ, Castellanos Franco EA, Schossau J, Ashbaugh RC, Pelled G, Gilad AA. A putative design for the electromagnetic activation of split proteins for molecular and cellular manipulation. Front Bioeng Biotechnol 2024; 12:1355915. [PMID: 38605993 PMCID: PMC11007078 DOI: 10.3389/fbioe.2024.1355915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/05/2024] [Indexed: 04/13/2024] Open
Abstract
The ability to manipulate cellular function using an external stimulus is a powerful strategy for studying complex biological phenomena. One approach to modulate the function of the cellular environment is split proteins. In this method, a biologically active protein or an enzyme is fragmented so that it reassembles only upon a specific stimulus. Although many tools are available to induce these systems, nature has provided other mechanisms to expand the split protein toolbox. Here, we show a novel method for reconstituting split proteins using magnetic stimulation. We found that the electromagnetic perceptive gene (EPG) changes conformation due to magnetic field stimulation. By fusing split fragments of a certain protein to both termini of the EPG, the fragments can be reassembled into a functional protein under magnetic stimulation due to conformational change. We show this effect with three separate split proteins: NanoLuc, APEX2, and herpes simplex virus type-1 thymidine kinase. Our results show, for the first time, that reconstitution of split proteins can be achieved only with magnetic fields. We anticipate that this study will be a starting point for future magnetically inducible split protein designs for cellular perturbation and manipulation. With this technology, we can help expand the toolbox of the split protein platform and allow better elucidation of complex biological systems.
Collapse
Affiliation(s)
- Connor J. Grady
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | | | - Jory Schossau
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Ryan C. Ashbaugh
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - Assaf A. Gilad
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
6
|
Chuang KH, Qian C, Gilad A, Pelled G. Magnetogenetic stimulation inside MRI induces spontaneous and evoked changes in neural circuits activity in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571681. [PMID: 38168269 PMCID: PMC10760131 DOI: 10.1101/2023.12.14.571681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The ability to modulate specific neural circuits and simultaneously visualize and measure brain activity with MRI would greatly impact understanding brain function in health and disease. The combination of neurostimulation methods and MRI in animal models have already shown promise in elucidating fundamental mechanisms associated with brain activity. We developed an innovative magnetogenetics neurostimulation technology that can trigger neural activity through magnetic fields. Similar to other genetic-based neuromodulation methods, magnetogenetics offers cell-, area- and temporal-specific control of neural activity. However, the magnetogenetics protein (Electromagnetic Preceptive Gene (EPG)) are activated by non-invasive magnetic fields, providing a unique way to target neural circuits by the MRI gradients while simultaneously measure their effect on brain activity. EPG was expressed in rat's visual cortex and the amplitude of low-frequency fluctuation (fALFF), resting-state functional connectivity (FC), and sensory activation was measured using a 7T MRI. The results demonstrate that EPG-expressing rats had significantly higher signal fluctuations in the visual areas and stronger FC in sensory areas consistent with known anatomical visuosensory and visuomotor connections. This new technology complements the existing neurostimulation toolbox and provides a mean to study brain function in a minimally-invasive way which was not possible previously.
Collapse
Affiliation(s)
- Kai-Hsiang Chuang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - Assaf Gilad
- Department of Radiology, Michigan State University, East Lansing, MI, United States
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Radiology, Michigan State University, East Lansing, MI, United States
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|