1
|
Chermá MD, Josefsson M, Rydberg I, Woxler P, Trygg T, Hollertz O, Gustafsson PA. Methylphenidate for Treating ADHD: A Naturalistic Clinical Study of Methylphenidate Blood Concentrations in Children and Adults With Optimized Dosage. Eur J Drug Metab Pharmacokinet 2017; 42:295-307. [PMID: 27220743 PMCID: PMC5340830 DOI: 10.1007/s13318-016-0346-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Methylphenidate (MPH), along with behavioral and psychosocial interventions, is the first-line medication to treat attention-deficit hyperactivity disorder (ADHD) in Sweden. The dose of MPH for good symptom control differs between patients. However, studies of MPH concentration measurement in ADHD treatment are limited. Objective To describe blood and oral fluid (OF) concentrations of MPH after administration of medication in patients with well-adjusted MPH treatment for ADHD, and to identify the most suitable matrix for accurate MPH concentration during treatment. Methods Patients were recruited from Child and Adolescent Psychiatry (CAP), General Psychiatry (GP), and the Department of Dependency (DD). Blood and OF samples were collected in the morning before MPH administration as well as 1 and 6 h after administration of the prescribed morning dose of MPH. Results Fifty-nine patients aged between 9 and 69 years, 76 % males. The daily dose of MPH varied from 18 to 180 mg, but the median daily dose per body weight was similar, approximately 1.0 mg/kg body weight. The median MPH concentration in blood 1 and 6 h after the morning dose was 5.4 and 9.3 ng/mL, respectively. Highly variable OF-to-blood ratios for MPH were found at all time points for all three groups. Conclusions Weight is a reliable clinical parameter for optimal dose titration. Otherwise, MPH blood concentration might be used for individual dose optimization and for monitoring of the prescribed dose. Relying only on the outcome in OF cannot be recommended for evaluation of accurate MPH concentrations for treatment monitoring.
Collapse
Affiliation(s)
- Maria D Chermá
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden. .,Department of Clinical Pharmacology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| | - Martin Josefsson
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.,Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Irene Rydberg
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Per Woxler
- Department of Dependency, Linköping University Hospital, Linköping, Sweden
| | - Tomas Trygg
- Department of Dependency, Linköping University Hospital, Linköping, Sweden
| | - Olle Hollertz
- Department of General Psychiatry, Västervik Hospital, Västervik, Sweden
| | - Per A Gustafsson
- Center for Social and Affective Neuroscience Department of Clinical and Experimental Medicine and Department of Child and Adolescent Psychiatry, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Ferré S. Mechanisms of the psychostimulant effects of caffeine: implications for substance use disorders. Psychopharmacology (Berl) 2016; 233:1963-79. [PMID: 26786412 PMCID: PMC4846529 DOI: 10.1007/s00213-016-4212-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/09/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND The psychostimulant properties of caffeine are reviewed and compared with those of prototypical psychostimulants able to cause substance use disorders (SUD). Caffeine produces psychomotor-activating, reinforcing, and arousing effects, which depend on its ability to disinhibit the brake that endogenous adenosine imposes on the ascending dopamine and arousal systems. OBJECTIVES A model that considers the striatal adenosine A2A-dopamine D2 receptor heteromer as a key modulator of dopamine-dependent striatal functions (reward-oriented behavior and learning of stimulus-reward and reward-response associations) is introduced, which should explain most of the psychomotor and reinforcing effects of caffeine. HIGHLIGHTS The model can explain the caffeine-induced rotational behavior in rats with unilateral striatal dopamine denervation and the ability of caffeine to reverse the adipsic-aphagic syndrome in dopamine-deficient rodents. The model can also explain the weaker reinforcing effects and low abuse liability of caffeine, compared with prototypical psychostimulants. Finally, the model can explain the actual major societal dangers of caffeine: the ability of caffeine to potentiate the addictive and toxic effects of drugs of abuse, with the particularly alarming associations of caffeine (as adulterant) with cocaine, amphetamine derivatives, synthetic cathinones, and energy drinks with alcohol, and the higher sensitivity of children and adolescents to the psychostimulant effects of caffeine and its potential to increase vulnerability to SUD. CONCLUSIONS The striatal A2A-D2 receptor heteromer constitutes an unequivocal main pharmacological target of caffeine and provides the main mechanisms by which caffeine potentiates the acute and long-term effects of prototypical psychostimulants.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Technology Building, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| |
Collapse
|
3
|
Ioannidis K, Chamberlain SR, Müller U. Ostracising caffeine from the pharmacological arsenal for attention-deficit hyperactivity disorder--was this a correct decision? A literature review. J Psychopharmacol 2014; 28:830-6. [PMID: 24989644 DOI: 10.1177/0269881114541014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Caffeine is one of the most widespread psychotropic substances in the world. It exerts multiple effects on the brain including adenosine receptor antagonism, and thereby has been found to modulate aspects of cognition, including attention, in animal models and in healthy human volunteers. This review considers what is known of the effects of caffeine on symptoms and cognitive functions in attention-deficit hyperactivity disorder (ADHD), a prototypical disorder of cognitive dysfunction. We consider the merits of investigating further caffeine's therapeutic potential as a monotherapy or as an adjunctive agent in ADHD. The potential benefits of re-opening a dialogue regarding the use of caffeine in ADHD clinical practice are highlighted, along with potential implications for the use of adenosine receptor antagonists in ADHD and other disorders characterised by cognitive impairment.
Collapse
Affiliation(s)
| | - Samuel R Chamberlain
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Ulrich Müller
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Frau L, Simola N, Morelli M. Contribution of Caffeine to the Psychostimulant, Neuroinflammatory and Neurotoxic Effects of Amphetamine-Related Drugs. JOURNAL OF CAFFEINE RESEARCH 2013. [DOI: 10.1089/jcr.2013.0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lucia Frau
- Section of Neuropsychopharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Section of Neuropsychopharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Section of Neuropsychopharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Centre of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
- CNR, Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
5
|
Vanattou-Saïfoudine N, McNamara R, Harkin A. Caffeine provokes adverse interactions with 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') and related psychostimulants: mechanisms and mediators. Br J Pharmacol 2012; 167:946-59. [PMID: 22671762 PMCID: PMC3492978 DOI: 10.1111/j.1476-5381.2012.02065.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/04/2012] [Accepted: 05/18/2012] [Indexed: 11/27/2022] Open
Abstract
Concomitant consumption of caffeine with recreational psychostimulant drugs of abuse can provoke severe acute adverse reactions in addition to longer term consequences. The mechanisms by which caffeine increases the toxicity of psychostimulants include changes in body temperature regulation, cardiotoxicity and lowering of the seizure threshold. Caffeine also influences the stimulatory, discriminative and reinforcing effects of psychostimulant drugs. In this review, we consider our current understanding of such caffeine-related drug interactions, placing a particular emphasis on an adverse interaction between caffeine and the substituted amphetamine, 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy'), which has been most recently described and characterized. Co-administration of caffeine profoundly enhances the acute toxicity of MDMA in rats, as manifested by high core body temperature, tachycardia and increased mortality. In addition, co-administration of caffeine enhances the long-term serotonergic neurotoxicity induced by MDMA. Observations to date support an interactive model of drug-induced toxicity comprising MDMA-related enhancement of dopamine release coupled to a caffeine-mediated antagonism of adenosine receptors in addition to inhibition of PDE. These experiments are reviewed together with reports of caffeine-related drug interactions with cocaine, d-amphetamine and ephedrine where similar mechanisms are implicated. Understanding the underlying mechanisms will guide appropriate intervention strategies for the management of severe reactions and potential for increased drug-related toxicity, resulting from concomitant caffeine consumption.
Collapse
Affiliation(s)
- N Vanattou-Saïfoudine
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
6
|
Mioranzza S, Costa MS, Botton PHS, Ardais AP, Matte VL, Espinosa J, Souza DO, Porciúncula LO. Blockade of adenosine A(1) receptors prevents methylphenidate-induced impairment of object recognition task in adult mice. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:169-76. [PMID: 21044657 DOI: 10.1016/j.pnpbp.2010.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/25/2010] [Accepted: 10/25/2010] [Indexed: 11/18/2022]
Abstract
Methylphenidate (MPH) is the preferred treatment used for attention-deficit/hyperactivity disorder (ADHD). Recently, misuse for MPH due to its apparent cognitive enhancer properties has been reported. Adenosine is a neuromodulator known to exert influence on the dopaminergic neurotransmission, which is the main pharmacological target of MPH. We have reported that an overdosage of MPH up-regulates adenosine A(1) receptors in the frontal cortex, but this receptor was not involved in its anxiolytic effects. In this study, the role of adenosine A(1) receptor was investigated on MPH-induced effects on aversive and recognition memory in adult mice. Adult mice received acute and chronic (15 days) administration of methylphenidate (5mg/kg, i.p.), or an acute overdosage (50mg/kg, i.p) in order to model misuse. Memory was assessed in the inhibitory avoidance and object recognition task. Acute administration 5mg/kg improved whereas 50mg/kg disrupted recognition memory and decreased performance in the inhibitory avoidance task. Chronic administration did not cause any effect on memory, but decreased adenosine A(1) receptors immunocontent in the frontal cortex. The selective adenosine A(1) receptor antagonist, (DPCPX 1mg/kg, i.p.), prevented methylphenidate-triggered recognition memory impairment. Our findings showed that recognition memory rather than aversive memory was differently affected by acute administration at both doses. Memory recognition was fully impaired by the overdosage, suggesting that misuse can be harmful for cognitive functions. The adenosinergic system via A(1) receptors may play a role in the methylphenidate actions probably by interfering with dopamine-enhancing properties of this drug.
Collapse
Affiliation(s)
- Sabrina Mioranzza
- Department of Biochemistry, Laboratory of Studies on the Purinergic System, Federal University of Rio Grande do Sul, Health and Basic Sciences Institute, Porto Alegre/RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Morelli M, Simola N. Methylxanthines and drug dependence: a focus on interactions with substances of abuse. Handb Exp Pharmacol 2011:483-507. [PMID: 20859810 DOI: 10.1007/978-3-642-13443-2_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This chapter examines the psychostimulant actions of methylxanthines, with a focus on the consequences of their excessive use. Consumption of methylxanthines is pervasive and their use is often associated with that of substances known to produce dependence and to have abuse potential. Therefore, the consequences of this combined use are taken into consideration in order to evaluate whether, and to what extent, methylxanthines could influence dependence on or abuse of other centrally active substances, leading to either amplification or attenuation of their effects. Since the methylxanthine that mostly influences mental processes and readily induces psychostimulation is caffeine, this review mainly focuses on caffeine as a prototype of methylxanthine-produced dependence, examining, at the same time, the risks related to caffeine use.
Collapse
Affiliation(s)
- Micaela Morelli
- Department of Toxicology, University of Cagliari, Cagliari, Italy.
| | | |
Collapse
|
8
|
Mioranzza S, Botton PHS, Costa MS, Espinosa J, Kazlauckas V, Ardais AP, Souza DO, Porciúncula LO. Adenosine A1 receptors are modified by acute treatment with methylphenidate in adult mice. Brain Res 2010; 1357:62-9. [PMID: 20699089 DOI: 10.1016/j.brainres.2010.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 07/27/2010] [Accepted: 08/02/2010] [Indexed: 02/05/2023]
Abstract
In recent years misuse of methylphenidate (MPH) has been reported. The main pharmacological target of methylphenidate is the dopaminergic system. Adenosine is a neuromodulator that influences the dopaminergic neurotransmission, but studies on MPH and adenosine are still lacking. In this study, adult mice were acutely treated with MPH (5mg/kg, i.p.) and to model misuse, they received an acute overdosage (50mg/kg, i.p). The involvement of adenosine A(1) receptors in anxiety-related behavior and locomotor and exploratory activity was examined. The administration of methylphenidate (5 and 50mg/kg) 30 min before the exposure to open field arena did not modify locomotor activity. The anxiolytic-like behavior was observed with both doses of MPH as revealed by the increase on the number of entries and the time spent in the open arms in the elevated plus-maze. Pre treatment with selective adenosine A(1) receptor antagonist (DPCPX 1mg/kg, i.p.) did not prevent anxiolytic effect caused by MPH 50mg/kg. Immunoblotting of frontal cortex and hippocampal extracts revealed that MPH 50mg/kg increased 88% adenosine A(1) receptor density in the frontal cortex. Extracts from hippocampus did not reveal any differences in the adenosine A(1) receptor density. Our findings ruled out the participation of adenosine A(1) receptors on the MPH-triggered anxiolytic effects. However, the density of adenosine A(1) receptors increased in a brain area strictly involved in the MPH-mediated effects. Thus, the adenosinergic system may play a role in the methylphenidate actions in the central nervous system.
Collapse
Affiliation(s)
- Sabrina Mioranzza
- Department of Biochemistry, Laboratory of Studies on the Purinergic System, Graduation Program in Biological Sciences-Biochemistry, Federal University of Rio Grande do Sul, Health and Basic Sciences Institute, Bairro Santana, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Boeck CR, Marques VB, Valvassori SS, Constantino LC, Rosa DV, Lima FF, Romano-Silva MA, Quevedo J. Early long-term exposure with caffeine induces cross-sensitization to methylphenidate with involvement of DARPP-32 in adulthood of rats. Neurochem Int 2009; 55:318-22. [DOI: 10.1016/j.neuint.2009.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/18/2009] [Accepted: 03/25/2009] [Indexed: 10/20/2022]
|
10
|
Diller JW, Saunders BT, Anderson KG. Effects of acute and repeated administration of caffeine on temporal discounting in rats. Pharmacol Biochem Behav 2008; 89:546-55. [PMID: 18329086 DOI: 10.1016/j.pbb.2008.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 01/18/2008] [Accepted: 02/05/2008] [Indexed: 11/28/2022]
Abstract
Delay to presentation is one variable that can weaken the reinforcing efficacy of an outcome in a choice situation and drugs have been shown to modify such choices. A growing body of literature has examined effects of stimulant drugs on temporal (delay) discounting, but effects of caffeine, the most widely used stimulant in the world, have not previously been assessed. In the present experiment, effects of caffeine (administered acutely and repeatedly) on temporal discounting were analyzed. Male Sprague-Dawley rats (n=7) chose between a single food pellet delivered immediately after a lever press and three food pellets delivered after a delay. The delay to the three pellets increased within each session, from 0 to 16 s. High doses of caffeine increased large-reinforcer choice relative to control conditions. With repeated caffeine exposure, percent choice for the large reinforcer decreased relative to acute administration, but was still greater than pre-drug baseline. Following withdrawal of drug administration, choice returned to levels seen during pre-drug baseline. Reintroduction of caffeine increased the percent choice for a larger, delayed reinforcer to near acute levels. The results from the present study are consistent with previous research in which stimulant drugs have decreased temporal (delay) discounting.
Collapse
Affiliation(s)
- James W Diller
- West Virginia University, Morgantown. WV 26506, United States
| | | | | |
Collapse
|