1
|
Bhuia MS, Rahaman MM, Islam T, Bappi MH, Sikder MI, Hossain KN, Akter F, Al Shamsh Prottay A, Rokonuzzman M, Gürer ES, Calina D, Islam MT, Sharifi-Rad J. Neurobiological effects of gallic acid: current perspectives. Chin Med 2023; 18:27. [PMID: 36918923 PMCID: PMC10015939 DOI: 10.1186/s13020-023-00735-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Gallic acid (GA) is a phenolic molecule found naturally in a wide range of fruits as well as in medicinal plants. It has many health benefits due to its antioxidant properties. This study focused on finding out the neurobiological effects and mechanisms of GA using published data from reputed databases. For this, data were collected from various sources, such as PubMed/Medline, Science Direct, Scopus, Google Scholar, SpringerLink, and Web of Science. The findings suggest that GA can be used to manage several neurological diseases and disorders, such as Alzheimer's disease, Parkinson's disease, strokes, sedation, depression, psychosis, neuropathic pain, anxiety, and memory loss, as well as neuroinflammation. According to database reports and this current literature-based study, GA may be considered one of the potential lead compounds to treat neurological diseases and disorders. More preclinical and clinical studies are required to establish GA as a neuroprotective drug.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Mizanur Rahaman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Iqbal Sikder
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Kazi Nadim Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Fatama Akter
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | | |
Collapse
|
2
|
Scheffer DDL, Freitas FC, Aguiar AS, Ward C, Guglielmo LGA, Prediger RD, Cronin SJF, Walz R, Andrews NA, Latini A. Impaired dopamine metabolism is linked to fatigability in mice and fatigue in Parkinson's disease patients. Brain Commun 2021; 3:fcab116. [PMID: 34423297 PMCID: PMC8374980 DOI: 10.1093/braincomms/fcab116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Fatigue is a common symptom of Parkinson’s disease that compromises significantly the patients’ quality of life. Despite that, fatigue has been under-recognized as symptom, its pathophysiology remains poorly understood, and there is no adequate treatment so far. Parkinson’s disease is characterized by the progressive loss of midbrain dopaminergic neurons, eliciting the classical motor symptoms including slowing of movements, muscular rigidity and resting tremor. The dopamine synthesis is mediated by the rate-limiting enzyme tyrosine hydroxylase, which requires tetrahydrobiopterin as a mandatory cofactor. Here, we showed that reserpine administration (1 mg/kg, two intraperitoneal injections with an interval of 48 h) in adult Swiss male mice (8–10 weeks; 35–45 g) provoked striatal depletion of dopamine and tetrahydrobiopterin, and intolerance to exercise. The poor exercise performance of reserpinized mice was not influenced by emotional or anhedonic factors, mechanical nociceptive thresholds, electrocardiogram pattern alterations or muscle-impaired bioenergetics. The administration of levodopa (100 mg/kg; i.p.) plus benserazide (50 mg/kg; i.p.) rescued reserpine-induced fatigability-like symptoms and restored striatal dopamine and tetrahydrobiopterin levels. Remarkably, it was observed, for the first time, that impaired blood dopamine metabolism inversely and idependently correlated with fatigue scores in eighteen idiopathic Parkinson’s disease patients (male n = 13; female n = 5; age 61.3 ± 9.59 years). Altogether, this study provides new experimental and clinical evidence that fatigue symptoms might be caused by the impaired striatal dopaminergic neurotransmission, pointing to a central origin of fatigue in Parkinson’s disease.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Fernando Cini Freitas
- Graduate Program in Medical Sciences, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Neurology Division, Hospital Governador Celso Ramos, Florianópolis, SC 88015-270, Brazil
| | - Aderbal Silva Aguiar
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Catherine Ward
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Rui Daniel Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Roger Walz
- Graduate Program in Medical Sciences, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Center for Applied Neuroscience, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Neurology Division, Departament of Internal Medicine, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Nick A Andrews
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.,The Salk in Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alexandra Latini
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Reinheimer JB, Bressan GN, de Freitas CM, Ceretta APC, Krum BN, Nogara PA, Rodrigues T, Schwerz JP, da Rocha JBT, Fachinetto R. Effects of CATECHIN on reserpine-induced vacuous chewing movements: behavioral and biochemical analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2439-2452. [PMID: 32725283 DOI: 10.1007/s00210-020-01923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/10/2020] [Indexed: 10/23/2022]
Abstract
This study evaluated the effect of (+)-catechin, a polyphenolic compound, on orofacial dyskinesia (OD) induced by reserpine in mice. The potential modulation of monoaminoxidase (MAO) activity, tyrosine hydroxylase (TH) and glutamic acid decarboxylase (GAD67) immunoreactivity by catechin were used as biochemical endpoints. The interaction of catechin with MAO-A and MAO-B was determined in vitro and in silico. The effects of catechin on OD induced by reserpine (1 mg/kg for 4 days, subcutaneously) in male Swiss mice were examined. After, catechin (10, 50 or 100 mg/kg, intraperitoneally) or its vehicle were given for another 20 days. On the 6th, 8th, 15th and 26th day, vacuous chewing movements (VCMs) and locomotor activity were quantified. Biochemical markers (MAO activity, TH and GAD67 immunoreactivity) were evaluated in brain structures. In vitro, catechin inhibited both MAO isoforms at concentrations of 0.34 and 1.03 mM being completely reversible for MAO-A and partially reversible for MAO-B. Molecular docking indicated that the catechin bound in the active site of MAO-A, while in the MAO-B it interacted with the surface of the enzyme in an allosteric site. In vivo, reserpine increased the VCMs and decreased the locomotor activity. Catechin (10 mg/kg), decreased the number of VCMs in the 8th day in mice pre-treated with reserpine without altering other behavioral response. Ex vivo, the MAO activity and TH and GAD67 immunoreactivity were not altered by the treatments. Catechin demonstrated a modest and transitory protective effect in a model of OD in mice.
Collapse
Affiliation(s)
- Jeane Binotto Reinheimer
- ªPrograma de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Getulio Nicola Bressan
- ªPrograma de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Catiuscia Molz de Freitas
- ªPrograma de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ana Paula Chiapinotto Ceretta
- Programa de Pós-graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, 97105-900, RS, Brazil
| | - Bárbara Nunes Krum
- Programa de Pós-graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, 97105-900, RS, Brazil
| | - Pablo Andrei Nogara
- ªPrograma de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Talita Rodrigues
- Programa de Pós-graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, 97105-900, RS, Brazil
| | | | - João Batista Teixeira da Rocha
- ªPrograma de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Roselei Fachinetto
- ªPrograma de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
- Programa de Pós-graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, 97105-900, RS, Brazil.
| |
Collapse
|
4
|
Ceretta APC, de Freitas CM, Schaffer LF, Reinheimer JB, Dotto MM, de Moraes Reis E, Scussel R, Machado-de-Ávila RA, Fachinetto R. Gabapentin reduces haloperidol-induced vacuous chewing movements in mice. Pharmacol Biochem Behav 2018; 166:21-26. [DOI: 10.1016/j.pbb.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
|
5
|
de Freitas CM, Busanello A, Schaffer LF, Peroza LR, Krum BN, Leal CQ, Ceretta APC, da Rocha JBT, Fachinetto R. Behavioral and neurochemical effects induced by reserpine in mice. Psychopharmacology (Berl) 2016; 233:457-67. [PMID: 26514557 DOI: 10.1007/s00213-015-4118-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 10/15/2015] [Indexed: 01/11/2023]
Abstract
RATIONALE Reserpine, a monoamine-depleting agent, which irreversibly and non-selectively blocks the vesicular monoamine transporter, has been used as an animal model to study several neurological disorders, including tardive dyskinesia and Parkinson's disease. OBJECTIVE The purpose of this study was to examine if motor deficits induced by reserpine in mice could be related to alterations in the expression of dopaminergic system proteins such as tyrosine hydroxylase (TH) and dopamine transporter (DAT) and in the activity of monoamine oxidase (MAO). METHODS Mice received either vehicle or reserpine (0.1, 0.5, or 1 mg/kg, s.c.) for four consecutive days. Two, 20, or 60 days after reserpine withdrawal, behavioral, and neurochemical changes were evaluated. RESULTS Reserpine at a dose of 0.5 and 1 mg/kg increased vacuous chewing movements (VCMs) and reduced locomotion. Behavioral changes were accompanied by reduction in TH immunoreactivity in the striatum evaluated on days 2 and 20 after the last injection of 1 mg/kg reserpine. Furthermore, negative correlations were found between VCM and MAO-A or MAO-B on day 2 and TH striatal immunoreactivity on day 20 after the last injection of 1 mg/kg reserpine. A positive correlation was observed between VCMs and DAT immunoreactivity in the substantia nigra on day 2 after the last injection of 0.5 mg/kg reserpine. CONCLUSIONS These findings suggest that the pharmacological blockage of vesicular monoamine transporter (VMAT) by reserpine caused neurochemical and behavioral alterations in mice.
Collapse
Affiliation(s)
- Catiuscia Molz de Freitas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alcindo Busanello
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Larissa Finger Schaffer
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luis Ricardo Peroza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Bárbara Nunes Krum
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | - João Batista Teixeira da Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Roselei Fachinetto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil. .,Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil. .,Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Oliveira-Lima A, Santos R, Hollais A, Gerardi-Junior C, Baldaia M, Wuo-Silva R, Yokoyama T, Costa J, Malpezzi-Marinho E, Ribeiro-Barbosa P, Berro L, Frussa-Filho R, Marinho E. Effects of ayahuasca on the development of ethanol-induced behavioral sensitization and on a post-sensitization treatment in mice. Physiol Behav 2015; 142:28-36. [DOI: 10.1016/j.physbeh.2015.01.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/11/2015] [Accepted: 01/26/2015] [Indexed: 01/14/2023]
|
7
|
Selective action of an atypical neuroleptic on the mechanisms related to the development of cocaine addiction: a pre-clinical behavioural study. Int J Neuropsychopharmacol 2014; 17:613-23. [PMID: 24345415 DOI: 10.1017/s1461145713001430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
An increased function in the mesolimbic dopaminergic system has been extensively associated with the rewarding effects of both natural stimuli and drugs of abuse. Thus, dopamine receptor blockers, such as neuroleptic drugs, can be proposed as candidates for potential therapeutic approaches to treat drug dependence. Notwithstanding, this therapeutic potential of neuroleptics critically depends on a selective action on the specific mechanisms related to the development of addiction. We compared the effects of different doses of haloperidol, ziprasidone and aripiprazole (first-, second- and third-generation neuroleptics, respectively) on spontaneous locomotor activity of mice in a novel environment, hyperlocomotion induced by acute cocaine administration and cocaine-induced locomotor sensitization by a two-injection protocol. Whereas high doses of haloperidol abolished the three behavioural paradigms without selectivity, low doses of ziprasidone selectively abolished the development of the behavioural sensitization phenomenon. Finally, low doses of aripiprazole inhibited acute cocaine-induced hyperlocomotion and behavioural sensitization without modifying spontaneous locomotor activity. Thus, aripiprazole at lower doses was the most selective antipsychotic drug concerning the inhibition of the development of behavioural sensitization to cocaine. Because locomotor sensitization in rodents has been proposed to share plastic mechanisms with drug addiction in humans, our data provide relevant suggestions to the clinical practice.
Collapse
|
8
|
Saito LP, Fukushiro DF, Hollais AW, Mári-Kawamoto E, Costa JM, Berro LF, Aramini TCF, Wuo-Silva R, Andersen ML, Tufik S, Frussa-Filho R. Acute total sleep deprivation potentiates amphetamine-induced locomotor-stimulant effects and behavioral sensitization in mice. Pharmacol Biochem Behav 2013; 117:7-16. [PMID: 24316348 DOI: 10.1016/j.pbb.2013.11.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 11/13/2013] [Accepted: 11/23/2013] [Indexed: 01/05/2023]
Abstract
It has been demonstrated that a prolonged period (48 h) of paradoxical sleep deprivation (PSD) potentiates amphetamine (AMP)-induced behavioral sensitization, an animal model of addiction-related neuroadaptations. In the present study, we examined the effects of an acute short-term deprivation of total sleep (TSD) (6h) on AMP-induced behavioral sensitization in mice and compared them to the effects of short-term PSD (6 h). Three-month-old male C57BL/6J mice underwent TSD (experiment 1-gentle handling method) or PSD (experiment 2-multiple platforms method) for 6 h. Immediately after the sleep deprivation period, mice were tested in the open field for 10 min under the effects of saline or 2.0 mg/kg AMP. Seven days later, to assess behavioral sensitization, all of the mice received a challenge injection of 2.0 mg/kg AMP and were tested in the open field for 10 min. Total, peripheral, and central locomotion, and grooming duration were measured. TSD, but not PSD, potentiated the hyperlocomotion induced by an acute injection of AMP and this effect was due to an increased locomotion in the central squares of the apparatus. Similarly, TSD facilitated the development of AMP-induced sensitization, but only in the central locomotion parameter. The data indicate that an acute period of TSD may exacerbate the behavioral effects of AMP in mice. Because sleep architecture is composed of paradoxical and slow wave sleep, and 6-h PSD had no effects on AMP-induced hyperlocomotion or sensitization, our data suggest that the deprivation of slow wave sleep plays a critical role in the mechanisms that underlie the potentiating effects of TSD on both the acute and sensitized addiction-related responses to AMP.
Collapse
Affiliation(s)
- Luis P Saito
- Department of Psychobiology, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002 São Paulo, SP, Brazil
| | - Daniela F Fukushiro
- Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1º andar, 04023062 São Paulo, SP, Brazil; Department of Psychology, Florida State University, 1107 W. Call St, 32304 Tallahassee, FL, USA.
| | - André W Hollais
- Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1º andar, 04023062 São Paulo, SP, Brazil
| | - Elisa Mári-Kawamoto
- Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1º andar, 04023062 São Paulo, SP, Brazil
| | - Jacqueline M Costa
- Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1º andar, 04023062 São Paulo, SP, Brazil
| | - Laís F Berro
- Department of Psychobiology, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002 São Paulo, SP, Brazil
| | - Tatiana C F Aramini
- Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1º andar, 04023062 São Paulo, SP, Brazil
| | - Raphael Wuo-Silva
- Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1º andar, 04023062 São Paulo, SP, Brazil
| | - Monica L Andersen
- Department of Psychobiology, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002 São Paulo, SP, Brazil
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002 São Paulo, SP, Brazil
| | - Roberto Frussa-Filho
- Department of Psychobiology, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1º andar, 04023062 São Paulo, SP, Brazil
| |
Collapse
|
9
|
Takatsu-Coleman AL, Zanin KA, Patti CL, Zager A, Lopes-Silva LB, Longo BM, Tufik S, Andersen ML, Frussa-Filho R. Short-term sleep deprivation reinstates memory retrieval in mice: the role of corticosterone secretion. Psychoneuroendocrinology 2013; 38:1967-78. [PMID: 23545263 DOI: 10.1016/j.psyneuen.2013.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/23/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
While the effects of sleep deprivation (SD) on the acquisition and consolidation phases of memory have been extensively characterized, its effects on memory retrieval remain overlooked. SD alone is a stressor, and stress-activated glucocorticoids promote bimodal effects on memory. Because we have recently demonstrated that 72h SD impairs memory retrieval in the plus-maze discriminative avoidance task (PM-DAT) in mice, this study investigated whether shorter SD periods would facilitate retrieval. In Experiment I, the temporal forgetting curve of the PM-DAT was determined and an interval between training/testing in which retrieval was no longer present was used in all subsequent experiments. In Experiments II and III, retrieval performance and corticosterone concentration, respectively, were quantified in mice that were sleep deprived for 12 or 24h before testing. In Experiments IV and V, the effects of the corticosterone synthesis inhibitor metyrapone were evaluated on 12h SD-induced retrieval reinstatement and corticosterone concentration enhancement, respectively. Experiment VI determined whether pre-test acute administration of exogenous corticosterone would mimic the facilitatory effects of 12h SD on retrieval. Thirty days after training, mice presented poor performance of the task; however, SD for 12h (but not for 24) before testing reinstated memory retrieval. This facilitatory effect was accompanied by increased corticosterone concentration, abolished by metyrapone, and mimicked by pre-test acute corticosterone administration. Collectively, short-term SD can facilitate memory retrieval by enhancing corticosterone secretion. This facilitatory effect is abolished by longer periods of SD.
Collapse
Affiliation(s)
- André L Takatsu-Coleman
- Departamento de Farmacologia, Universidade Federal de São Paulo, Rua Botucatu 862, Ed. Leal Prado, 1(o) andar, 04023062 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Caffeine is the most widely used psychoactive substance in the world and it is generally believed that it promotes beneficial effects on cognitive performance. However, there is also evidence suggesting that caffeine has inhibitory effects on learning and memory. Considering that caffeine may have anxiogenic effects, thus changing the emotional state of the subjects, state-dependent learning may play a role in caffeine-induced cognitive alterations. Mice were administered 20 mg/kg caffeine before training and/or before testing both in the plus-maze discriminative avoidance task (an animal model that concomitantly evaluates learning, memory, anxiety-like behaviour and general activity) and in the inhibitory avoidance task, a classic paradigm for evaluating memory in rodents. Pre-training caffeine administration did not modify learning, but produced an anxiogenic effect and impaired memory retention. While pre-test administration of caffeine did not modify retrieval on its own, the pre-test administration counteracted the memory deficit induced by the pre-training caffeine injection in both the plus-maze discriminative and inhibitory avoidance tasks. Our data demonstrate that caffeine-induced memory deficits are critically related to state-dependent learning, reinforcing the importance of considering the participation of state-dependency on the interpretation of the cognitive effects of caffeine. The possible participation of caffeine-induced anxiety alterations in state-dependent memory deficits is discussed.
Collapse
|
11
|
Gallic acid decreases vacuous chewing movements induced by reserpine in rats. Pharmacol Biochem Behav 2013; 104:132-7. [PMID: 23313549 DOI: 10.1016/j.pbb.2013.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/26/2012] [Accepted: 01/03/2013] [Indexed: 11/23/2022]
Abstract
Involuntary oral movements are present in several diseases and pharmacological conditions; however, their etiology and efficient treatments remain unclear. Gallic acid is a natural polyphenolic acid found in gall nuts, sumac, oak bark, tea leaves, grapes and wine, with potent antioxidant and antiapoptotic activity. Thus, the present study investigated the effects of gallic acid on vacuous chewing movements (VCMs) in an animal model induced by reserpine. Rats received either vehicle or reserpine (1mg/kg/day, s.c.) during three days, followed by treatment with water or different doses of gallic acid (4.5, 13.5 or 40.5mg/kg/day, p.o.) for three more days. As result, reserpine increased the number of VCMs in rats, and this effect was maintained for at least three days after its withdrawal. Gallic acid at two different doses (13.5 and 40.5mg/kg/day) has reduced VCMs in rats previously treated with reserpine. Furthermore, we investigated oxidative stress parameters (DCFH-DA oxidation, TBARS and thiol levels) and Na(+),K(+)-ATPase activity in striatum and cerebral cortex, however, no changes were observed. These findings show that gallic acid may have promissory use in the treatment of involuntary oral movements.
Collapse
|
12
|
Fukushiro DF, Josino FS, Saito LP, Costa JM, Zanlorenci LHF, Berro LF, Fernandes-Santos L, Morgado F, Mári-Kawamoto E, Frussa-Filho R. Differential effects of intermittent and continuous exposure to novel environmental stimuli on the development of amphetamine-induced behavioral sensitization in mice: implications for addiction. Drug Alcohol Depend 2012; 124:135-41. [PMID: 22296920 DOI: 10.1016/j.drugalcdep.2011.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/22/2011] [Accepted: 12/30/2011] [Indexed: 01/28/2023]
Abstract
BACKGROUND Previous studies have demonstrated a preventive effect of continuous environmental enrichment during early development on the vulnerability of rodents to drug addiction-related behaviors. Recently, it was demonstrated that a continuous environmental enrichment could eliminate already established addiction-related behaviors in mice. The present study compared the effects of intermittent or continuous exposure to novel stimuli during repeated amphetamine (Amp) treatment on the development of behavioral sensitization (an animal model of addiction-related neuroadaptations) in adult mice. METHODS Three-month-old male Swiss mice were treated with 2.5mg/kg Amp every other day for 13 days in their home cages. Novel objects were presented in their home cages for 2h on non-drug treatment days (experiment 1) or for 24h/day during the 13 days of drug treatment (experiment 2). Seven days after the drug treatment had finished, the mice were challenged with 2.5mg/kg Amp, and their locomotor activity was quantified in a familiar open field for 10 min. RESULTS Intermittent exposure to the novel objects did not modify the acute Amp locomotor stimulatory effect but potentiated the development of Amp-induced locomotor sensitization. This enhanced sensitization was due to increased locomotion in the central squares of the apparatus, which suggests anxiolysis or increased impulsiveness. Conversely, continuous exposure to the novel objects potentiated the acute Amp locomotor stimulatory effect and blunted the development of Amp-induced locomotor sensitization. CONCLUSIONS We conclude that addiction-related behaviors can be differentially and critically modified depending on the schedule and period of the novelty exposure.
Collapse
Affiliation(s)
- Daniela F Fukushiro
- Department of Pharmacology, Universidade Federal de São Paulo, R Botucatu, 862, Ed Leal Prado, 1° andar, 04023062 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The 5-HT1A-receptor agonist flibanserin reduces drug-induced dyskinesia in RGS9-deficient mice. J Neural Transm (Vienna) 2012; 119:1351-9. [PMID: 22569849 DOI: 10.1007/s00702-012-0815-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
Drug-induced dyskinesia is a major complication of dopamine replacement therapy in advanced Parkinson's disease consisting of dystonia, chorea and athetosis. Agonists at 5-HT1A-receptors attenuate levodopa-induced motor complications in non-human primates. Mice with increased dopamine D2 receptor (DRD2) signalling due to the lack of expression of the regulator of G-protein signalling 9 (RGS9) also develop dyskinesia following levodopa treatment. We investigated whether the 5-HT1A-receptor agonist flibanserin compared with buspirone reduces motor abnormalities induced by levodopa or quinelorane, a selective dopamine D2-receptor agonist. Following dopamine depletion via reserpine, 40 mice (20 wild-type and 20 RGS9 knock-out) were treated with flibanserin or buspirone in combination with levodopa or quinelorane. Motor behaviour was analysed using open field analysis. RGS9 knock-out mice displayed significantly more drug-induced dystonia (p < 0.04; t test) than wild type. In quinelorane-treated wild-type mice flibanserin as well as buspirone significantly reduced dystonia (p < 0.05). In RGS9 knock-out animals again both reduced quinelorane-induced dystonia. However, flibanserin was significantly more effective (p = 0.003). Following reserpine pretreatment and administration of levodopa wild-type and RGS 9 knock-out mice showed mild to moderate dystonia. Surprisingly, 10 mg/kg buspirone increased dystonia in both animal groups, whereas it was decreased by 10 mg/kg flibanserin. However, compared with levodopa alone only the increase of dystonia by buspirone was significant (p < 0.04). Flibanserin showed promising antidyskinetic effects in a model of drug-induced dyskinesia. Our data underline the possible benefit of 5-HT1A agonists in drug-induced dyskinesia.
Collapse
|
14
|
Sanday L, Zanin KA, Patti CL, Tufik S, Frussa-Filho R. Role of state-dependency in memory impairment induced by acute administration of midazolam in mice. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:1-7. [PMID: 22326930 DOI: 10.1016/j.pnpbp.2012.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 01/18/2012] [Accepted: 01/28/2012] [Indexed: 10/14/2022]
Abstract
Although the memory deficits produced by pre-training benzodiazepines administration have been extensively demonstrated both in humans and in animal studies, there is considerable controversy about the involvement of the state-dependency phenomenon on benzodiazepines-induced anterograde amnesia. The present study aimed to characterize the role of state-dependency on memory deficits induced by the benzodiazepine midazolam (MID) in mice submitted to the plus-maze discriminative avoidance task (PM-DAT). This animal model concomitantly evaluates learning and retention of discriminative avoidance task, exploratory habituation as well as anxiety-like behavior and motor activity. Mice received 2mg/kg MID before training and/or before testing in the PM-DAT. Pre-training (but not pre-test) MID administration impaired the retention of the discriminative avoidance task, which was not counteracted by a subsequent pre-test administration of this drug, thus refuting the role of state-dependency. Conversely, the pre-training administration of MID also led to an impairment of the habituation of exploration in the PM-DAT (an animal model of non-associative memory). This habituation deficit was state-dependent since it was absent in pre-training plus pre-test MID treated mice. Concomitantly, MID pre-training administration induced anxiolytic effects and diminished the aversive effectiveness of the aversive stimuli of the task, leading to an impairment of the acquisition of the discriminative avoidance task. Our findings suggest that pre-training benzodiazepine administration can impair the retention of different types of memory by producing specific deleterious effects on learning or by inducing state-dependent memory deficits.
Collapse
Affiliation(s)
- Leandro Sanday
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
15
|
Chronic amphetamine transforms the emotional significance of a novel but not a familiar environment: implications for addiction. Int J Neuropsychopharmacol 2011; 14:955-65. [PMID: 21156091 DOI: 10.1017/s1461145710001379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both drug-induced locomotor sensitization and reactivity to novelty in rodents have been related to drug-craving mechanisms in humans. We investigated whether the exposure to a completely novel environment would modulate the expression of locomotor sensitization induced by repeated administration of amphetamine (Amp) in mice. In addition to locomotion, different open-field behavioural parameters were used to evaluate the possible involvement of anxiogenic-like effects induced by Amp, novelty or a combination of the two. In order to avoid misinterpretations due to different locomotor baseline conditions, we used an open-field illumination condition in which previous exposure to the apparatus did not modify locomotion (although it reliably increased grooming behaviour). Acute Amp administration increased locomotion in mice previously habituated to the open field (Hab) but not in mice exposed to the apparatus for the first time (Nov). This absence of Amp-induced locomotor activation in Nov mice may be related to higher anxiety-like levels, because these animals displayed longer freezing duration. However, only Nov mice developed locomotor sensitization. Because Amp challenge in Amp pre-treated Nov mice did not induce an increase in freezing behaviour, the locomotor sensitization in Nov mice might be related to the tolerance of Amp-induced anxiogenic-like behaviour in novel environments. Repeated Amp administration increased motivation to explore the environment in Nov mice in that these animals presented a within-session locomotion-habituation deficit. Our data suggest that a complex and plastic interaction between the anxiogenic and motivational properties of both novelty and Amp can critically modify the behavioural expression of craving-related mechanisms.
Collapse
|
16
|
Valeriana officinalis ameliorates vacuous chewing movements induced by reserpine in rats. J Neural Transm (Vienna) 2011; 118:1547-57. [DOI: 10.1007/s00702-011-0640-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 03/23/2011] [Indexed: 12/23/2022]
|
17
|
Kulkarni SK, Dhir A. Animal Models of Tardive Dyskinesia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:265-87. [DOI: 10.1016/b978-0-12-381328-2.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
18
|
Mouse models of neurological disorders—A comparison of heritable and acquired traits. Biochim Biophys Acta Mol Basis Dis 2010; 1802:785-95. [DOI: 10.1016/j.bbadis.2010.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/17/2010] [Accepted: 05/19/2010] [Indexed: 01/17/2023]
|
19
|
Teixeira AM, Reckziegel P, Müller L, Pereira RP, Roos DH, Rocha JB, Bürger ME. Intense exercise potentiates oxidative stress in striatum of reserpine-treated animals. Pharmacol Biochem Behav 2009; 92:231-5. [DOI: 10.1016/j.pbb.2008.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 11/07/2008] [Accepted: 11/25/2008] [Indexed: 11/16/2022]
|
20
|
Involvement of striatal lipid peroxidation and inhibition of calcium influx into brain slices in neurobehavioral alterations in a rat model of short-term oral exposure to manganese. Neurotoxicology 2008; 29:1062-8. [PMID: 18778733 DOI: 10.1016/j.neuro.2008.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 11/23/2022]
Abstract
Manganese is an essential element for biological systems, nevertheless occupational exposure to high levels of Mn can lead to neurodegenerative disorder, characterized by excessive Mn accumulation, especially in astrocytes of basal ganglia and symptoms closely resembling idiopathic Parkinson's disease (PD). The purpose of this study was to evaluate behavioral and biochemical alterations in adult rats exposed for 30 days to 10 and 25mg/mL of MnCl(2) in their drinking water. MnCl(2) intoxicated rats showed impaired locomotor activity in comparison to control animals. Furthermore, lipid peroxidation were increased, delta-aminolevulinate dehydratase (delta-ALA-D, an enzyme sensitive to pro-oxidant situations) activity was inhibited and (45)Ca(2+) influx into striatal slices was decreased in rats exposed to 25mg/mL of Mn, indicating that this brain region was markedly affected by short-term Mn exposure. In contrast, Mn exposure was not associated with characteristic extrapyramidal effects and did not modify protein oxidation, suggesting that the striatal damage represents early stages of Mn-induced damage. In addition, treatment with Mn was associated with reduced body weight gain, but there were no discernible alterations in liver and kidney function. In conclusion, Mn caused increased oxidative stress and decreased (45)Ca(2+) influx into the striatum, which are likely linked to impaired locomotor activity, but not with the occurrence of orofacial dyskinesia.
Collapse
|
21
|
Bishnoi M, Chopra K, Kulkarni SK. Progesterone attenuates neuroleptic-induced orofacial dyskinesia via the activity of its metabolite, allopregnanolone, a positive GABA(A) modulating neurosteroid. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:451-61. [PMID: 17988775 DOI: 10.1016/j.pnpbp.2007.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Revised: 08/26/2007] [Accepted: 09/23/2007] [Indexed: 10/22/2022]
Abstract
GABAergic hypofunction in the basal ganglia is stated as an important mechanism underlying the pathophysiology of tardive dyskinesia. In the present study we sought to establish the protective effect of progesterone in haloperidol-induced orofacial dyskinesia. Besides this we also tried to find out whether the GABA(A) facilitatory action of progesterone metabolites is responsible for the action of progesterone in attenuating the haloperidol-induced orofacial dyskinesia, an animal model of tardive dyskinesia. Chronic administration of haloperidol (1 mg/kg, i.p. 21 days) induced significant increase in hyperkinetic orofacial dyskinetic movements and oxidative damage in the brain as compared to control group. Coadministration of progesterone (5-20 mg/kg, i.p. 21 days) dose dependently prevented the hyperkinetic orofacial movements as well as oxidative damage parameters. The protective activity of progesterone was reversed by pre treatment with finasteride (50 mg/kg i.p.), a 5alpha-reductase inhibitor that blocks the metabolism of progesterone to allopregnanolone and other metabolites. Further, chronic administration of haloperidol resulted in significant decrease in dopamine levels in rat striatum homogenates and increase in catecholamine metabolite levels. Coadministration of progesterone also reversed the decrease in dopamine levels induced by chronic haloperidol treatment, an effect which was again reversed by pre treatment with finasteride. Our study provides strong evidence that the protective effect of progesterone resides in the GABAergic as well as neuroprotective activity of its metabolite allopregnanolone. These findings lend support to recognized GABA hypofunction theory of tardive dyskinesia and strongly suggest progesterone as a protective therapy in this debilitating movement disorder.
Collapse
Affiliation(s)
- Mahendra Bishnoi
- Centre with Potential for Excellence in Biomedical Sciences (CPEBS), Panjab University, Chandigarh 160014, India
| | | | | |
Collapse
|