1
|
Rodrigues JA, Narasimhamurthy RK, Joshi MB, Dsouza HS, Mumbrekar KD. Pesticides Exposure-Induced Changes in Brain Metabolome: Implications in the Pathogenesis of Neurodegenerative Disorders. Neurotox Res 2022; 40:1539-1552. [PMID: 35781222 PMCID: PMC9515138 DOI: 10.1007/s12640-022-00534-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Pesticides have been used in agriculture, public health programs, and pharmaceuticals for many decades. Though pesticides primarily target pests by affecting their nervous system and causing other lethal effects, these chemical entities also exert toxic effects in inadvertently exposed humans through inhalation or ingestion. Mounting pieces of evidence from cellular, animal, and clinical studies indicate that pesticide-exposed models display metabolite alterations of pathways involved in neurodegenerative diseases. Hence, identifying common key metabolites/metabolic pathways between pesticide-induced metabolic reprogramming and neurodegenerative diseases is necessary to understand the etiology of pesticides in the rise of neurodegenerative disorders. The present review provides an overview of specific metabolic pathways, including tryptophan metabolism, glutathione metabolism, dopamine metabolism, energy metabolism, mitochondrial dysfunction, fatty acids, and lipid metabolism that are specifically altered in response to pesticides. Furthermore, we discuss how these metabolite alterations are linked to the pathogenesis of neurodegenerative diseases and to identify novel biomarkers for targeted therapeutic approaches.
Collapse
Affiliation(s)
- Joel Arvin Rodrigues
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Rekha K Narasimhamurthy
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| |
Collapse
|
2
|
El‐mahdy KM, Farouk O. Efficient access to some new pyrimidine derivatives and their antimicrobial evaluation. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kamelia M. El‐mahdy
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Osama Farouk
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| |
Collapse
|
3
|
Fehér E, Szatmári I, Dudás T, Zalatnai A, Farkas T, Lőrinczi B, Fülöp F, Vécsei L, Toldi J. Structural Evaluation and Electrophysiological Effects of Some Kynurenic Acid Analogs. Molecules 2019; 24:molecules24193502. [PMID: 31561643 PMCID: PMC6803921 DOI: 10.3390/molecules24193502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/28/2023] Open
Abstract
Kynurenic acid (KYNA), a metabolite of tryptophan, as an excitatory amino acid receptor antagonist is an effective neuroprotective agent in case of excitotoxicity, which is the hallmark of brain ischemia and several neurodegenerative processes. Therefore, kynurenine pathway, KYNA itself, and its derivatives came into the focus of research. During the past fifteen years, our research group has developed several neuroactive KYNA derivatives, some of which proved to be neuroprotective in preclinical studies. In this study, the synthesis of these KYNA derivatives and their evaluation with divergent molecular characteristics are presented together with their most typical effects on the monosynaptic transmission in CA1 region of the hippocampus of the rat. Their effects on the basic neuronal activity (on the field excitatory postsynaptic potentials: fEPSP) were studied in in vitro hippocampal slices in 1 and 200 μM concentrations. KYNA and its derivative 4 in both 1 and 200 μM concentrations proved to be inhibitory, while derivative 8 only in 200 μM decreased the amplitudes of fEPSPs. Derivative 5 facilitated the fEPSPs in 200 μM concentration. This is the first comparative study which evaluates the structural and functional differences of formerly and newly developed KYNA analogs. Considerations on possible relations between molecular structures and their physiological effects are presented.
Collapse
Affiliation(s)
- Evelin Fehér
- Department of Neurology, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary.
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary.
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Tamás Dudás
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Anna Zalatnai
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Tamás Farkas
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary.
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary.
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary.
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary.
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| |
Collapse
|
4
|
Rajda C, Pukoli D, Bende Z, Majláth Z, Vécsei L. Excitotoxins, Mitochondrial and Redox Disturbances in Multiple Sclerosis. Int J Mol Sci 2017; 18:ijms18020353. [PMID: 28208701 PMCID: PMC5343888 DOI: 10.3390/ijms18020353] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). There is increasing evidence that MS is not only characterized by immune mediated inflammatory reactions, but also by neurodegenerative processes. There is cumulating evidence that neurodegenerative processes, for example mitochondrial dysfunction, oxidative stress, and glutamate (Glu) excitotoxicity, seem to play an important role in the pathogenesis of MS. The alteration of mitochondrial homeostasis leads to the formation of excitotoxins and redox disturbances. Mitochondrial dysfunction (energy disposal failure, apoptosis, etc.), redox disturbances (oxidative stress and enhanced reactive oxygen and nitrogen species production), and excitotoxicity (Glu mediated toxicity) may play an important role in the progression of the disease, causing axonal and neuronal damage. This review focuses on the mechanisms of mitochondrial dysfunction (including mitochondrial DNA (mtDNA) defects and mitochondrial structural/functional changes), oxidative stress (including reactive oxygen and nitric species), and excitotoxicity that are involved in MS and also discusses the potential targets and tools for therapeutic approaches in the future.
Collapse
Affiliation(s)
- Cecilia Rajda
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - Dániel Pukoli
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
- Department of Neurology, Vaszary Kolos Hospital, 2500 Esztergom, Hungary.
| | - Zsuzsanna Bende
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - László Vécsei
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
- MTA-SZTE Neuroscience Research Group, 6725 Szeged, Hungary.
| |
Collapse
|
5
|
Diabetes and Tryptophan Metabolism. TRYPTOPHAN METABOLISM: IMPLICATIONS FOR BIOLOGICAL PROCESSES, HEALTH AND DISEASE 2015. [DOI: 10.1007/978-3-319-15630-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
The kynurenine pathway: A missing piece in the puzzle of valproate action? Neuroscience 2013; 234:135-45. [DOI: 10.1016/j.neuroscience.2012.12.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 11/18/2022]
|
7
|
Abstract
Various pathologies of the central nervous system (CNS) are accompanied by alterations in tryptophan metabolism. The main metabolic route of tryptophan degradation is the kynurenine pathway; its metabolites are responsible for a broad spectrum of effects, including the endogenous regulation of neuronal excitability and the initiation of immune tolerance. This Review highlights the involvement of the kynurenine system in the pathology of neurodegenerative disorders, pain syndromes and autoimmune diseases through a detailed discussion of its potential implications in Huntington's disease, migraine and multiple sclerosis. The most effective preclinical drug candidates are discussed and attention is paid to currently under-investigated roles of the kynurenine pathway in the CNS, where modulation of kynurenine metabolism might be of therapeutic value.
Collapse
|
8
|
Szyndler J, Maciejak P, Turzyńska D, Sobolewska A, Walkowiak J, Płaźnik A. The effects of electrical hippocampal kindling of seizures on amino acids and kynurenic acid concentrations in brain structures. J Neural Transm (Vienna) 2012; 119:141-9. [PMID: 21861191 PMCID: PMC3265731 DOI: 10.1007/s00702-011-0700-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/08/2011] [Indexed: 11/05/2022]
Abstract
Our study demonstrated that the development of seizures during the electrically induced kindling of seizures is associated with significant changes in the concentration of kynurenic acid (KYNA) and its precursor, tryptophan (TRP). The primary finding of our study was an increase in KYNA levels and the KYNA/TRP ratio (a theoretical index of activity of the kynurenine pathway) in the amygdala and hippocampus of kindled animals. We also found decreases in the concentration of tryptophan in the hippocampus and prefrontal cortex. Changes in the concentration of KYNA and TRP in the amygdala were accompanied by a significant decrease in γ-Aminobutryic Acid (GABA) levels and an increase in the glutamate/GABA ratio. Moreover, we found a significant negative correlation between the local concentrations of KYNA and glutamate in the amygdala of kindled rats. However, there were no changes in the local concentrations of the following amino acids: glutamate, aspartate, glutamine, glycine, taurine and alanine. In conclusion, these new results suggest a modulatory influence of KYNA on the process of epileptogenesis, characterized by a negative relationship between the KYNA and glutamate systems in the amygdala.
Collapse
Affiliation(s)
- J Szyndler
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 26/28 Krakowskie Przedmieście Street, 00-927, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
9
|
A novel kynurenic acid analog (SZR104) inhibits pentylenetetrazole-induced epileptiform seizures. An electrophysiological study : special issue related to kynurenine. J Neural Transm (Vienna) 2012; 119:151-4. [PMID: 22231843 DOI: 10.1007/s00702-011-0755-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
The concentration of kynurenic acid (KYNA) in the cerebrospinal fluid, which is in the nanomolar range, is known to decrease in epilepsy. The experimental data suggest that treatment with L: -KYN dose dependently increases the concentration of the neuroprotective KYNA in the brain, which itself hardly crosses the blood-brain barrier. However, it is suggested that new synthetic KYNA analogs may readily cross the blood-brain barrier. In this study, we tested the hypothesis that a new KYNA analog administered systemically in a sufficient dose results in a decreased population spike activity recorded from the pyramidal layer of area CA1 of the hippocampus, and also provides protection against pentylenetetrazole-induced epileptiform seizures.
Collapse
|
10
|
The utilization of 2-aminoprop-1-ene-1,1,3-tricarbonitrile as a precursor to quinoline, furan and thiophene derivatives with antitumor activities. HETEROCYCL COMMUN 2011. [DOI: 10.1515/hc.2011.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Abstract
Alzheimer’s disease (AD) is one of the major causes of dementia. The pathogenesis of the disease is not entirely understood, but the amyloid β peptide (Aβ) and the formation of senile plaques seem to play pivotal roles. Oligomerization of the Aβ is thought to trigger a cascade of events, including oxidative stress, glutamate excitotoxicity and inflammation. The kynurenine (KYN) pathway is the major route for the metabolism of the essential amino acid tryptophan. Some of the metabolites of this pathway, such as 3-hydroxykynurenine and quinolinic acid, are known to have neurotoxic properties, whereas others, such as kynurenic acid, are putative neuroprotectants. Among other routes, the KYN pathway has been shown to be involved in AD pathogenesis, and connections to other known mechanisms have also been demonstrated. Oxidative stress, glutamate excitotoxicity and the neuroinflammation involved in AD pathogenesis have been revealed to be connected to the KYN pathway. Intervention at these key steps may serve as the aim of potential therapy.
Collapse
Affiliation(s)
- Zsigmond Tamas Kincses
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Hungary
| | | | | |
Collapse
|
12
|
Marosi M, Nagy D, Farkas T, Kis Z, Rózsa E, Robotka H, Fülöp F, Vécsei L, Toldi J. A novel kynurenic acid analogue: a comparison with kynurenic acid. An in vitro electrophysiological study. J Neural Transm (Vienna) 2009; 117:183-8. [PMID: 19953278 DOI: 10.1007/s00702-009-0346-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 11/16/2009] [Indexed: 11/29/2022]
Abstract
Kynurenic acid is an endogenous product of the tryptophan metabolism, and as a broad-spectrum antagonist of excitatory amino acid receptors may serve as a protective agent in neurological disorders. The use of kynurenic acid as a neuroprotective agent is rather limited, however, because it has only restricted ability to cross the blood-brain barrier. Accordingly, new kynurenic acid analogues which can readily cross the blood-brain barrier and exert their complex anti-excitotoxic activity are greatly needed. Such a novel analogue, 2-(2-N,N-dimethylaminoethylamine-1-carbonyl)-1H-quinolin-4-one hydrochloride, has been developed and tested. In an in vitro electrophysiological study, in which its properties were compared with those of kynurenic acid, the new analogue behaved quite similarly to kynurenic acid: in the micromolar range, its administration led to a decrease in the amplitudes of the field excitatory postsynaptic potentials in the CA1 region of the hippocampus, while in nanomolar concentrations it did not give rise to inhibition, but, in fact, facilitated the field excitatory postsynaptic potentials. Moreover, the new analogue demonstrated similar protective action against PTZ-induced facilitation to that observed after kynurenic acid administration. The findings strongly suggest that the neuroactive effects of the new analogue are comparable with those of kynurenic acid, but, in contrast with kynurenic acid, it readily crosses the blood-brain barrier. The new analogue may therefore be considered a promising candidate for clinical studies.
Collapse
Affiliation(s)
- Máté Marosi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Production of l-tryptophan-derived catabolites in hepatocytes from streptozotocin-induced diabetic rats. Eur J Nutr 2009; 48:145-53. [DOI: 10.1007/s00394-009-0774-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
|
14
|
The reaction of beta-amino-alpha,gamma-dicyanocrotononitrile with acetophenone: synthesis of pyridine, pyridazine and thiophene derivatives with antimicrobial activities. ACTA PHARMACEUTICA 2008; 58:429-44. [PMID: 19103577 DOI: 10.2478/v10007-008-0030-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Condensation of beta-amino-alpha,gamma-dicyanocrotononitrile (1) with acetophenone gave 2-amino-4-phenylpenta-1,3-diene-1,1,3-tricarbonitrile (2). The latter product was used in a series of heterocyclization reactions with different reagents such as diazonium salts, hydrazines, hydroxylamines and elemental sulfur to give pyridazine, pyrazole, isoxazole and thiophene derivatives, respectively. On the other hand, it gave pyridine derivatives with aromatic aldehydes folowed by reaction with cyanomethylene reagents. The MIC values for the newly synthesized product were measured against E. coli, B. cereus, B. subtilis and C. albicans.
Collapse
|
15
|
Time course of changes in the concentration of kynurenic acid in the brain of pentylenetetrazol-kindled rats. Brain Res Bull 2008; 78:299-305. [PMID: 19026723 DOI: 10.1016/j.brainresbull.2008.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/23/2008] [Accepted: 10/27/2008] [Indexed: 11/22/2022]
Abstract
The time response of changes in the brain concentration of kynurenic acid (KYNA) was examined in rats subjected to the pentylenetetrazol (PTZ)-induced kindling of seizures (n=32). The development of seizures was accompanied by a progressive decrease in KYNA concentration in the caudate putamen, entorhinal cortex, piriform cortex, amygdala and hippocampus. A single injection of PTZ (35 mg/kg i.p.--the dose used in the kindling experiment, n=7) caused a much less pronounced KYNA depletion, with different structures affected: the nucleus accumbens, piriform cortex and amygdala. The comparison of KYNA concentration in rats subjected to the kindling of seizures with that in animals given a single, proconvulsive, dose of PTZ (55 mg/kg, n=7) showed that the kindling itself, rather than the occurrence of a fit of seizures, was responsible for the depletion of KYNA in the hippocampus and caudate putamen. Another control experiment showed that neither single nor repeated saline injections caused significant changes in KYNA concentration. The data indicate that changes in the brain concentration of an endogenous inhibitory neurotransmitter, KYNA, undergo selective modulation in the course of a kindling of seizures. This suggests that the depletion of KYNA within the hippocampus may be directly related to the development of kindled seizures in this model of epilepsy.
Collapse
|