1
|
Yang SS, Chang H, Chang S. Does ketamine ameliorate the social stress‐related bladder dysfunction in mice? Neurourol Urodyn 2020; 39:935-944. [DOI: 10.1002/nau.24324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Stephen Shei‐Dei Yang
- Division of Urology, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei Taiwan
- School of MedicineBuddhist Tzu Chi UniversityHualien Taiwan
| | - Hsi‐Hsien Chang
- Division of Urology, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei Taiwan
| | - Shang‐Jen Chang
- Division of Urology, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei Taiwan
- School of MedicineBuddhist Tzu Chi UniversityHualien Taiwan
| |
Collapse
|
2
|
Wakita M, Nagami H, Takase Y, Nakanishi R, Kotani N, Akaike N. Modifications of excitatory and inhibitory transmission in rat hippocampal pyramidal neurons by acute lithium treatment. Brain Res Bull 2015; 117:39-44. [PMID: 26247839 DOI: 10.1016/j.brainresbull.2015.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 11/25/2022]
Abstract
The acute effects of high-dose Li(+) treatment on glutamatergic and GABAergic transmissions were studied in the "synaptic bouton" preparation of isolated rat hippocampal pyramidal neurons by using focal electrical stimulation. Both action potential-dependent glutamatergic excitatory and GABAergic inhibitory postsynaptic currents (eEPSC and eIPSC, respectively) were dose-dependently inhibited in the external media containing 30-150 mM Li(+), but the sensitivity for Li(+) was greater tendency for eEPSCs than for eIPSCs. When the effects of Li(+) on glutamate or GABAA receptor-mediated whole-cell responses (IGlu and IGABA) elicited by an exogenous application of glutamate or GABA were examined in the postsynaptic soma membrane of CA3 neurons, Li(+) slightly inhibited both IGlu and IGABA at the 150 mM Li(+) concentration. Present results suggest that acute treatment with high concentrations of Li(+) acts preferentially on presynaptic terminals, and that the Li(+)-induced inhibition may be greater for excitatory than for inhibitory transmission.
Collapse
Affiliation(s)
- Masahito Wakita
- Research Division for Clinical Pharmacology, Medical Corporation, Juryokai, Kumamoto Kinoh Hospital, 6-8-1, Yamamuro, Kita-ku, Kumamoto 860-8518, Japan
| | - Hideaki Nagami
- Research Division for Clinical Pharmacology, Medical Corporation, Juryokai, Kumamoto Kinoh Hospital, 6-8-1, Yamamuro, Kita-ku, Kumamoto 860-8518, Japan
| | - Yuko Takase
- Research Division for Clinical Pharmacology, Medical Corporation, Juryokai, Kumamoto Kinoh Hospital, 6-8-1, Yamamuro, Kita-ku, Kumamoto 860-8518, Japan
| | - Ryoji Nakanishi
- Research Division for Clinical Pharmacology, Medical Corporation, Juryokai, Kumamoto Kinoh Hospital, 6-8-1, Yamamuro, Kita-ku, Kumamoto 860-8518, Japan
| | - Naoki Kotani
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6, Kawarasone, Koshigaya 343-0821, Japan
| | - Norio Akaike
- Research Division for Clinical Pharmacology, Medical Corporation, Juryokai, Kumamoto Kinoh Hospital, 6-8-1, Yamamuro, Kita-ku, Kumamoto 860-8518, Japan; Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6, Kawarasone, Koshigaya 343-0821, Japan; Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
3
|
Wakita M, Kotani N, Shoudai K, Yamaga T, Akaike N. Modulation of inhibitory and excitatory fast neurotransmission in the rat CNS by heavy water (D2O). J Neurophysiol 2015; 114:1109-18. [PMID: 26019316 DOI: 10.1152/jn.00801.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 05/26/2015] [Indexed: 11/22/2022] Open
Abstract
The effects of heavy water (deuterium oxide, D2O) on GABAergic and glutamatergic spontaneous and evoked synaptic transmission were investigated in acute brain slice and isolated "synaptic bouton" preparations of rat hippocampal CA3 neurons. The substitution of D2O for H2O reduced the frequency and amplitude of GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) in a concentration-dependent manner but had no effect on glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs). In contrast, for evoked synaptic responses in isolated neurons, the amplitude of both inhibitory and excitatory postsynaptic currents (eIPSCs and eEPSCs) was decreased in a concentration-dependent manner. This was associated with increases of synaptic failure rate (Rf) and paired-pulse ratio (PPR). The effect was larger for eIPSCs compared with eEPSCs. These results clearly indicate that D2O acts differently on inhibitory and excitatory neurotransmitter release machinery. Furthermore, D2O significantly suppressed GABAA receptor-mediated whole cell current (IGABA) but did not affect glutamate receptor-mediated whole cell current (IGlu). The combined effects of D2O at both the pre- and postsynaptic sites may explain the greater inhibition of eIPSCs compared with eEPSCs. Finally, D2O did not enhance or otherwise affect the actions of the general anesthetics nitrous oxide and propofol on spontaneous or evoked GABAergic and glutamatergic neurotransmissions, or on IGABA and IGlu. Our results suggest that previously reported effects of D2O to mimic and/or modulate anesthesia potency result from mechanisms other than modulation of GABAergic and glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Masahito Wakita
- Research Division for Clinical Pharmacology, Medical Corporation, Jyuryo Group, Kumamoto Kinoh Hospital, Kitaku, Kumamoto, Japan; Research Division for Life Science, Kumamoto Health Science University, Kitaku, Kumamoto, Japan; and
| | - Naoki Kotani
- Research Division of Neurophysiology, Kitamoto Hospital, Koshigaya, Japan
| | - Kiyomitsu Shoudai
- Research Division for Life Science, Kumamoto Health Science University, Kitaku, Kumamoto, Japan; and
| | - Toshitaka Yamaga
- Research Division for Life Science, Kumamoto Health Science University, Kitaku, Kumamoto, Japan; and
| | - Norio Akaike
- Research Division for Clinical Pharmacology, Medical Corporation, Jyuryo Group, Kumamoto Kinoh Hospital, Kitaku, Kumamoto, Japan; Research Division for Life Science, Kumamoto Health Science University, Kitaku, Kumamoto, Japan; and Research Division of Neurophysiology, Kitamoto Hospital, Koshigaya, Japan
| |
Collapse
|
4
|
Wakita M, Shin MC, Iwata S, Nonaka K, Akaike N. Effects of ethanol on GABA(A) receptors in GABAergic and glutamatergic presynaptic nerve terminals. J Pharmacol Exp Ther 2012; 341:809-19. [PMID: 22434676 DOI: 10.1124/jpet.111.189126] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ethanol (EtOH) has a number of behavioral effects, including intoxication, amnesia, and/or sedation, that are thought to relate to the activation of GABA(A) receptors. However, GABA(A) receptors at different cellular locations have different sensitivities to EtOH. The present study used the "synaptic bouton" preparation where we could stimulate nerve endings on mechanically dissociated single rat hippocampal CA1 and CA3 pyramidal neurons and investigate the effects of EtOH on presynaptic and postsynaptic GABA(A) receptors. Low concentrations of EtOH (10 mM) had no effect on postsynaptic GABA(A) and glutamate receptors or voltage-dependent Na(+) and Ca(2+) channels. Higher concentrations (≥100 mM) could significantly inhibit these current responses. EtOH at 10 mM had no direct effect on inhibitory postsynaptic currents (IPSCs) and excitatory postsynaptic currents (EPSCs) evoked by focal stimulation of single boutons [evoked IPSCs (eIPSCs) and evoked EPSCs (eEPSCs)]. However, coapplication of 10 mM EtOH with muscimol decreased the amplitude of eIPSCs and eEPSCs and increased their paired-pulse ratio. The effects on eEPSCs were reversed by bicuculline. Coapplication of muscimol and EtOH significantly increased the frequency of spontaneous IPSCs and EPSCs. The EtOH effects on the postsynaptic responses and eEPSCs were similar in neurons from neonatal and mature rats. These results revealed that low concentrations of EtOH can potentiate the activation of presynaptic GABA(A) receptors to inhibit evoked GABA and glutamate release. These results indicate a high sensitivity of presynaptic GABA(A) receptor to EtOH, which needs to be accounted for when considering the cellular mechanisms of EtOH's physiological responses.
Collapse
Affiliation(s)
- Masahito Wakita
- Research Division for Life Sciences, Kumamoto Health Science University, 325 Izumimachi, Kumamoto, 861-5598, Japan
| | | | | | | | | |
Collapse
|