1
|
Matin R, Zhang K, Ibrahim GM, Gouveia FV. Systematic Review of Experimental Deep Brain Stimulation in Rodent Models of Epilepsy. Neuromodulation 2024:S1094-7159(24)01220-0. [PMID: 39641703 DOI: 10.1016/j.neurom.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES Deep brain stimulation (DBS) is an established neuromodulatory technique for treating drug-resistant epilepsy. Despite its widespread use in carefully selected patients, the mechanisms underlying the antiseizure effects of DBS remain unclear. Herein, we provide a detailed overview of the current literature pertaining to experimental DBS in rodent models of epilepsy and identify relevant trends in this field. MATERIALS AND METHODS A systematic review was conducted using the PubMed MEDLINE database, following PRISMA guidelines. Data extraction focused on study characteristics, including stimulation protocol, seizure and behavioral outcomes, and reported mechanisms of action. RESULTS Of the 1788 resultant articles, 164 were included. The number of published articles has grown exponentially in recent decades. Most studies used chemically or electrically induced models of epilepsy. DBS targeting the anterior nucleus of the thalamus, hippocampal formation, or amygdala was most extensively studied. Effective stimulation parameters were identified, and novel stimulation designs were explored, such as closed-loop and unstructured stimulation approaches. Common mechanisms included synaptic modulation through the depression of excitatory neurotransmission and inhibitory release of GABA. At the network level, antiseizure effects were associated with the desynchronization of neural networks, characterized by decreased low-frequency oscillations. CONCLUSIONS Rodent models have significantly advanced the understanding of disease pathophysiology and the development of novel therapies. However, fundamental questions remain regarding DBS mechanisms, optimal targets, and parameters. Further research is necessary to improve DBS therapy and tailor treatment to individual patient circumstances.
Collapse
Affiliation(s)
- Rafi Matin
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kristina Zhang
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Pakalapati N, Chiang CC, Durand DM. Low-frequency stimulation of corpus callosum suppresses epileptiform activity in the cortex through γ-aminobutyric acid type B receptor and slow afterhyperpolarization-mediated reduction in tissue excitability. Epilepsia 2024; 65:3689-3702. [PMID: 39425912 DOI: 10.1111/epi.18135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE Deep brain stimulation, particularly low-frequency stimulation (LFS) targeting fiber tracts, has emerged as a potential therapy for drug-resistant epilepsy (DRE) and for generalized epilepsy, both of which pose significant treatment challenges. LFS diffusely suppresses seizures in the cortex when applied to fiber tracts like the corpus callosum (CC). Nevertheless, the specific processes responsible for suppressing epileptic activity in the cortex induced by LFS remain unclear. This study investigates the mechanisms underlying the antiepileptic effect in the cortex of LFS of the CC in coronal rodent brain slices. METHODS An in vitro 4-aminopyridine (4-AP) seizure model of cortical seizures was generated. LFS stimulation parameters were optimized to provide the largest antiepileptic effect in the cortex when applied to the CC. Changes to tissue excitability and percent time spent seizing were measured due to LFS in artificial cerebrospinal fluid, 4-AP, and in the presence of various specific and nonspecific γ-aminobutyric acid type B (GABAB) and slow afterhyperpolarization (sAHP) antagonists. RESULTS LFS significantly suppressed seizure activity in the cortex, with an optimal frequency of 5 Hz (76.5%). Tissue excitability during LFS reduces across a wide range of interstimulus intervals, with a maximum reduction at 200 ms. Notably, the tissue excitability remains depressed at 1000 ms. LFS, in the presence of GABAB antagonists, had diminished seizure reduction (<15%) and failed to reduce tissue excitability in the 50-400-ms range. Tissue excitability measured with paired pulses in the 600-1000-ms range was depressed in the presence of GABAB antagonists, suggesting a different antiepileptic mechanism was active. Upon administering sAHP antagonists, seizure reduction was once again diminished (<15%). Upon administration of both sAHP and GABAB antagonists, LFS failed to provide any meaningful seizure reduction (<5%). SIGNIFICANCE LFS of the CC provides an antiepileptic effect in the cortex with well-understood mechanisms and could be an alternative to surgical intervention for patients suffering from DRE.
Collapse
Affiliation(s)
- Nrupen Pakalapati
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chia-Chu Chiang
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dominique M Durand
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Xue S, Yi P, Mao Y, Zhan Z, Cai Y, Song Z, Wang K, Yang K, Song Y, Wang X, Long H. Nucleus accumbens shell electrical lesion attenuates seizures and gliosis in chronic temporal lobe epilepsy rats. Epileptic Disord 2024. [PMID: 39570088 DOI: 10.1002/epd2.20316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is the most prevalent form of epilepsy. Prior research has indicated the involvement of the nucleus accumbens shell (NAcSh) in the process of epileptogenesis, thereby implying its potential as a therapeutic target for TLE. In the present study, we investigated the antiepileptic effect of the NAcSh electrical lesion. METHODS Chronic TLE was induced by stereotactic injection of kainic acid (KA) into the hippocampus 3 weeks after KA administration, and NAcSh electrical lesions were performed. Seizures in rats were monitored by video electroencephalogram (EEG) 1 week following the NAcSh electrical lesion. Besides, the spatial memory function assessment in rats was conducted using the Morris water maze (MWM) test in the final week of the experiment. Later, hippocampal glial cell activation and neuron loss in rats were evaluated through immunohistochemistry. RESULTS TLE rats subjected to NAcSh electrical lesion exhibited a significant reduction in the frequency of seizures compared to untreated TLE rats. Furthermore, NAcSh electrical lesion led to less activation of hippocampal glial cells and fewer neuronal loss in TLE rats. It is worth noting that the NAcSh electrical lesion did not cause additional memory impairment. SIGNIFICANCE In the present study, the NAcSh electrical lesion exhibited a definitive therapeutic effect on the chronic TLE rat model, potentially due to decreased hippocampal TLE-induced activation of glial cells and neuron loss. In conclusion, our results indicated that the NAcSh is a promising therapeutic target for TLE and possesses high potential for clinical application.
Collapse
Affiliation(s)
- Shuaishuai Xue
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Peiyao Yi
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yangqi Mao
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhengming Zhan
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yonghua Cai
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zibin Song
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Kewan Wang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Kaijun Yang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ye Song
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xingqin Wang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Hao Long
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Kremen V, Sladky V, Mivalt F, Gregg NM, Balzekas I, Marks V, Brinkmann BH, Lundstrom BN, Cui J, St Louis EK, Croarkin P, Alden EC, Fields J, Crockett K, Adolf J, Bilderbeek J, Hermes D, Messina S, Miller KJ, Van Gompel J, Denison T, Worrell GA. A platform for brain network sensing and stimulation with quantitative behavioral tracking: Application to limbic circuit epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.09.24302358. [PMID: 38370724 PMCID: PMC10871449 DOI: 10.1101/2024.02.09.24302358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures. These seizures often originate from limbic networks and people also experience chronic comorbidities related to memory, mood, and sleep (MMS). Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is a proven therapy, but the optimal stimulation parameters remain unclear. We developed a neurotechnology platform for tracking seizures and MMS to enable data streaming between an investigational brain sensing-stimulation implant, mobile devices, and a cloud environment. Artificial Intelligence algorithms provided accurate catalogs of seizures, interictal epileptiform spikes, and wake-sleep brain states. Remotely administered memory and mood assessments were used to densely sample cognitive and behavioral response during ANT-DBS. We evaluated the efficacy of low-frequency versus high-frequency ANT-DBS. They both reduced seizures, but low-frequency ANT-DBS showed greater reductions and better sleep and memory. These results highlight the potential of synchronized brain sensing and behavioral tracking for optimizing neuromodulation therapy.
Collapse
|
5
|
Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis 2023; 179:106045. [PMID: 36809846 DOI: 10.1016/j.nbd.2023.106045] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Neuromodulation (neurostimulation) is a relatively new and rapidly growing treatment for refractory epilepsy. Three varieties are approved in the US: vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). This article reviews thalamic DBS for epilepsy. Among many thalamic sub-nuclei, DBS for epilepsy has been targeted to the anterior nucleus (ANT), centromedian nucleus (CM), dorsomedial nucleus (DM) and pulvinar (PULV). Only ANT is FDA-approved, based upon a controlled clinical trial. Bilateral stimulation of ANT reduced seizures by 40.5% at three months in the controlled phase (p = .038) and 75% by 5 years in the uncontrolled phase. Side effects related to paresthesias, acute hemorrhage, infection, occasional increased seizures, and usually transient effects on mood and memory. Efficacy was best documented for focal onset seizures in temporal or frontal lobe. CM stimulation may be useful for generalized or multifocal seizures and PULV for posterior limbic seizures. Mechanisms of DBS for epilepsy are largely unknown, but animal work points to changes in receptors, channels, neurotransmitters, synapses, network connectivity and neurogenesis. Personalization of therapies, in terms of connectivity of the seizure onset zone to the thalamic sub- nucleus and individual characteristics of the seizures, might lead to improved efficacy. Many questions remain about DBS, including the best candidates for different types of neuromodulation, the best targets, the best stimulation parameters, how to minimize side effects and how to deliver current noninvasively. Despite the questions, neuromodulation provides useful new opportunities to treat people with refractory seizures not responding to medicines and not amenable to resective surgery.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Room 4865, Palo Alto, CA 94304, USA.
| |
Collapse
|
6
|
Khodadadi M, Zare M, Rezaei M, Bakhtiarzadeh F, Barkley V, Shojaei A, Raoufy MR, Mirnajafi-Zadeh J. Effect of low frequency stimulation of olfactory bulb on seizure severity, learning, and memory in kindled rats. Epilepsy Res 2022; 188:107055. [DOI: 10.1016/j.eplepsyres.2022.107055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
|
7
|
Yang H, Shan W, Fan J, Deng J, Luan G, Wang Q, Zhang Y, You H. Mapping the Neural Circuits Responding to Deep Brain Stimulation of the Anterior Nucleus of the Thalamus in the Rat Brain. Epilepsy Res 2022; 187:107027. [DOI: 10.1016/j.eplepsyres.2022.107027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/15/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022]
|
8
|
Elder C, Friedman D, Devinsky O, Doyle W, Dugan P. Responsive neurostimulation targeting the anterior nucleus of the thalamus in 3 patients with treatment-resistant multifocal epilepsy. Epilepsia Open 2019; 4:187-192. [PMID: 30868130 PMCID: PMC6398101 DOI: 10.1002/epi4.12300] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/27/2018] [Indexed: 01/02/2023] Open
Abstract
Electrical stimulation in the anterior nucleus of the thalamus (ANT) has previously been found to be efficacious for reducing seizure frequency in patients with epilepsy. Bilateral deep brain stimulation (DBS) of the ANT is an open-loop system that can be used in the management of treatment-resistant epilepsy. In contrast, the responsive neurostimulation (RNS) system is a closed-loop device that delivers treatment in response to prespecified electrocorticographic triggers. The efficacy and safety of RNS targeting the ANT is unknown. We describe 3 patients with treatment-resistant multifocal epilepsy who were implanted with an RNS system, which included unilateral stimulation of the ANT. After >33 months of follow-up, there were no adverse effects on mood, memory or behavior. Two patients had ≥50% reduction in disabling seizures and one patient had a 50% reduction compared to pretreatment baseline. Although reduction in seizure frequency has been modest to date, these findings support responsive neurostimulation of the ANT as feasible, safe, and well-tolerated. Further studies are needed to determine optimal stimulation parameters.
Collapse
Affiliation(s)
- Christopher Elder
- Department of Neurology and Comprehensive Epilepsy CenterNYU Langone School of MedicineNew YorkNew York
- Department of NeurologyUCLA Seizure Disorder CenterLos AngelesCalifornia
| | - Daniel Friedman
- Department of Neurology and Comprehensive Epilepsy CenterNYU Langone School of MedicineNew YorkNew York
| | - Orrin Devinsky
- Department of Neurology and Comprehensive Epilepsy CenterNYU Langone School of MedicineNew YorkNew York
| | - Werner Doyle
- Department of NeurosurgeryNYU Langone School of MedicineNew YorkNew York
| | - Patricia Dugan
- Department of Neurology and Comprehensive Epilepsy CenterNYU Langone School of MedicineNew YorkNew York
| |
Collapse
|
9
|
Magdaleno‐Madrigal VM, Contreras‐Murillo G, Valdés‐Cruz A, Martínez‐Vargas D, Martínez A, Villasana‐Salazar B, Almazán‐Alvarado S. Effects of High‐ and Low‐Frequency Stimulation of the Thalamic Reticular Nucleus on Pentylentetrazole‐Induced Seizures in Rats. Neuromodulation 2019; 22:425-434. [DOI: 10.1111/ner.12926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Víctor Manuel Magdaleno‐Madrigal
- Laboratorio de Neurofisiología del Control y la Regulación. Dirección de Investigaciones en Neurociencias Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz Ciudad de México Mexico
- Carrera de Psicología Facultad de Estudios Superiores Zaragoza‐UNAM Ciudad de México Mexico
| | - Gerardo Contreras‐Murillo
- Laboratorio de Neurofisiología del Control y la Regulación. Dirección de Investigaciones en Neurociencias Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz Ciudad de México Mexico
| | - Alejandro Valdés‐Cruz
- Laboratorio de Neurofisiología del Control y la Regulación. Dirección de Investigaciones en Neurociencias Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz Ciudad de México Mexico
- Carrera de Psicología Facultad de Estudios Superiores Zaragoza‐UNAM Ciudad de México Mexico
| | - David Martínez‐Vargas
- Laboratorio de Neurofisiología del Control y la Regulación. Dirección de Investigaciones en Neurociencias Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz Ciudad de México Mexico
| | - Adrián Martínez
- Laboratorio de sueño y epilepsia. Dirección de Investigaciones en Neurociencias Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz Ciudad de México Mexico
| | - Benjamín Villasana‐Salazar
- Laboratorio de Neurofisiología del Control y la Regulación. Dirección de Investigaciones en Neurociencias Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz Ciudad de México Mexico
| | - Salvador Almazán‐Alvarado
- Laboratorio de Neurofisiología del Control y la Regulación. Dirección de Investigaciones en Neurociencias Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz Ciudad de México Mexico
| |
Collapse
|
10
|
Couturier NH, Durand DM. Corpus callosum low-frequency stimulation suppresses seizures in an acute rat model of focal cortical seizures. Epilepsia 2018; 59:2219-2230. [PMID: 30426470 PMCID: PMC6279515 DOI: 10.1111/epi.14595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Low-frequency fiber-tract stimulation has been shown to be effective in treating mesial temporal lobe epilepsies through activation of the hippocampal commissure in rodents and human patients. The corpus callosum is a major pathway connecting the two hemispheres of the brain; however, few experiments have documented corpus callosum stimulation. The objective is to determine the efficacy of corpus callosum stimulation at low frequencies to suppress cortical seizures. METHODS 4-Aminopyridine was injected in the primary motor cortex of 24 rats under anesthesia. Recording electrodes were placed in the contralateral motor cortex and hippocampus. Three pairs of stimulating electrodes were inserted into the corpus callosum along its longitudinal axis. Local field potentials were recorded 1 hour before, during, and after stimulation to determine the effect of stimulation on seizure duration. Stimulation was delivered from each pair of electrodes independently in separate experiments. Furthermore, electrical stimulation was applied to the region of the corpus callosum with the highest degree of innervation of the seizure focus to compare the efficacy of different stimulation frequencies (1-30 Hz) on seizure suppression. RESULTS Corpus callosum stimulation was effective at suppressing seizures at 10 Hz by 76% (P < 0.05, n = 5) and at 20 Hz by 95% (P < 0.0001, n = 14). Stimulation at frequencies of 1 and 30 Hz did not have a significant effect on reducing the total time spent seizing (P > 0.9999, n = 5). Furthermore, stimulation was only effective at suppressing seizures when the pair of electrodes was placed within the section of corpus callosum containing fibers innervating the seizure focus. Secondarily generalized seizures in the hippocampus were eliminated when seizures in the cortical focus were suppressed. SIGNIFICANCE Low-frequency fiber-tract stimulation of the corpus callosum suppresses both cortical and cortically induced hippocampal seizures in an acute model of focal cortical seizures. The stimulation paradigm is selective, as it is only effective when targeted to specific regions of the corpus callosum that project maximally to cortical regions generating the seizure activity. Selective placement of stimulation electrodes along the corpus callosum could be used as a patient-specific treatment for cortical epilepsies.
Collapse
Affiliation(s)
- Nicholas H. Couturier
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Dominique M. Durand
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland, OH, U.S.A
| |
Collapse
|
11
|
Izadi A, Ondek K, Schedlbauer A, Keselman I, Shahlaie K, Gurkoff G. Clinically indicated electrical stimulation strategies to treat patients with medically refractory epilepsy. Epilepsia Open 2018; 3:198-209. [PMID: 30564779 PMCID: PMC6293066 DOI: 10.1002/epi4.12276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2018] [Indexed: 12/25/2022] Open
Abstract
Focal epilepsies represent approximately half of all diagnoses, and more than one-third of these patients are refractory to pharmacologic treatment. Although resection can result in seizure freedom, many patients do not meet surgical criteria, as seizures may be multifocal in origin or have a focus in an eloquent region of the brain. For these individuals, several U.S. Food and Drug Administration (FDA)-approved electrical stimulation paradigms serve as alternative options, including vagus nerve stimulation, responsive neurostimulation, and stimulation of the anterior nucleus of the thalamus. All of these are safe, flexible, and lead to progressive seizure control over time when used as an adjunctive therapy to antiepileptic drugs. Focal epilepsies frequently involve significant comorbidities such as cognitive decline. Similar to antiepilepsy medications and surgical resection, current stimulation targets and parameters have yet to address cognitive impairments directly, with patients reporting persistent comorbidities associated with focal epilepsy despite a significant reduction in the number of their seizures. Although low-frequency theta oscillations of the septohippocampal network are critical for modulating cellular activity and, in turn, cognitive processing, the coordination of neural excitability is also imperative for preventing seizures. In this review, we summarize current FDA-approved electrical stimulation paradigms and propose that theta oscillations of the medial septal nucleus represent a novel neuromodulation target for concurrent seizure reduction and cognitive improvement in epilepsy. Ultimately, further advancements in clinical neurostimulation strategies will allow for the efficient treatment of both seizures and comorbidities, thereby improving overall quality of life for patients with epilepsy.
Collapse
Affiliation(s)
- Ali Izadi
- Department of Neurological SurgeryUniversity of CaliforniaDavisCalifornia,U.S.A.
| | - Katelynn Ondek
- Department of Neurological SurgeryUniversity of CaliforniaDavisCalifornia,U.S.A.,Center for NeuroscienceUniversity of CaliforniaDavisCalifornia,U.S.A.
| | - Amber Schedlbauer
- Department of Neurological SurgeryUniversity of CaliforniaDavisCalifornia,U.S.A.
| | - Inna Keselman
- Department of Neurological SurgeryUniversity of CaliforniaDavisCalifornia,U.S.A.,Department of NeurologyUniversity of CaliforniaDavisCaliforniaU.S.A.
| | - Kiarash Shahlaie
- Department of Neurological SurgeryUniversity of CaliforniaDavisCalifornia,U.S.A.,Center for NeuroscienceUniversity of CaliforniaDavisCalifornia,U.S.A.
| | - Gene Gurkoff
- Department of Neurological SurgeryUniversity of CaliforniaDavisCalifornia,U.S.A.,Center for NeuroscienceUniversity of CaliforniaDavisCalifornia,U.S.A.
| |
Collapse
|
12
|
Seizure Detection and Network Dynamics of Generalized Convulsive Seizures: Towards Rational Designing of Closed-Loop Neuromodulation. NEUROSCIENCE JOURNAL 2018; 2017:9606213. [PMID: 29387712 PMCID: PMC5745672 DOI: 10.1155/2017/9606213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Objective Studies have demonstrated the utility of closed-loop neuromodulation in treating focal onset seizures. There is an utmost need of neurostimulation therapy for generalized tonic-clonic seizures. The study goals are to map the thalamocortical network dynamics during the generalized convulsive seizures and identify targets for reliable seizure detection. Methods Local field potentials were recorded from bilateral cortex, hippocampi, and centromedian thalami in Sprague-Dawley rats. Pentylenetetrazol was used to induce multiple convulsive seizures. The performances of two automated seizure detection methods (line length and P-operators) as a function of different cortical and subcortical structures were estimated. Multiple linear correlations-Granger's Causality was used to determine the effective connectivity. Results Of the 29 generalized tonic-clonic seizures analyzed, line length detected 100% of seizures in all the channels while the P-operator detected only 35% of seizures. The detection latencies were shortest in the thalamus in comparison to the cortex. There was a decrease in amplitude correlation within the thalamocortical network during the seizure, and flow of information was decreased from thalamus to hippocampal-parietal nodes. Significance The preclinical study confirms thalamus as a superior target for automated detection of generalized seizures and modulation of synchrony to increase coupling may be a strategy to abate seizures.
Collapse
|
13
|
Effects of low-frequency electrical stimulation of the anterior piriform cortex on kainate-induced seizures in rats. Epilepsy Behav 2017; 72:1-7. [PMID: 28564587 DOI: 10.1016/j.yebeh.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Recent evidence in animals and humans suggests that low-frequency stimulation (LFS) has significant antiepileptic properties. The anterior piriform cortex (APC) is a highly susceptible seizure-trigger zone and may be critical for the initiation and propagation of seizures originating from cortical and limbic foci. We used the kainic acid (KA) seizure model in rats to assess the therapeutic effect of LFS of the APC on seizures. METHODS Adult male Sprague-Dawley rats were implanted with electrodes in the left APC and recording electrodes bilaterally in the hippocampal CA3 regions. Rats were monitored continuously with video-EEG after the emergence of spontaneous recurrent seizures that followed induction of status epilepticus by intraperitoneal KA. After two weeks of baseline recordings to determine seizure frequency, LFS of the APC was applied 60-min On 15-min Off, for two weeks with 1Hz biphasic square waves, 0.2ms pulse width, at 200μA. Another 2-week period of video-EEG monitoring was done after the cessation of LFS to study the carry-over effect. Changes in seizure frequency, severity, and duration between baseline, during LFS, and post-LFS were analyzed using the Poisson regression model. RESULTS Overall seizure frequency decreased during the post-LFS period to 5% of that at baseline (p=0.003). Severe seizures (stages 4 and 5 on the Racine scale) decreased to 0% of the baseline during the post-LFS period. CONCLUSIONS Two weeks of LFS of the APC reduced spontaneous seizure frequency and severity in the KA model with the effect outlasting the stimulation. Our findings suggest that the APC can be an important therapeutic target for stimulation in epilepsy.
Collapse
|
14
|
Yang AC, Meng DW, Liu HG, Shi L, Zhang K, Qiao H, Yang LC, Hao HW, Li LM, Zhang JG. The ability of anterior thalamic signals to predict seizures in temporal lobe epilepsy in kainate-treated rats. Epilepsia 2016; 57:1369-76. [PMID: 27481634 DOI: 10.1111/epi.13469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To analyze the local field potential (LFP) of the anterior nucleus of the thalamus (ANT) of epileptic rats using the Generic Osorio-Frei algorithm (GOFA), and to determine the ability of the ANT LFP to predict clinical seizures in temporal lobe epilepsy. METHODS GOFA is an advanced real-time technique used to detect and predict seizures. In this article, GOFA was utilized to process the electrical signals of ANT and the motor cortex recorded in 12 rat models of temporal lobe epilepsy (TLE) induced via the injection of kainic acid into the unilateral hippocampus. The electroencephalography (EEG) data included (1) 161 clinical seizures (each contained a 10-min segment) involving the ANT and cortical regions and (2) one hundred three 10-min segments of randomly selected interictal (no seizure) data. RESULTS Minimal false-positives (0.51 ± 0.36/h) and no false-negatives were detected based on the ANT LFP data processed using GOFA. In ANT LFP, the delay from electrographic onset (EO) to automated onset (AO) was 1.24 ± 0.47 s, and the delay from AO to clinical onset (CO) was 7.73 ± 3.23 s. The AO time occurred significantly earlier in the ANT than in the cortex (p = 0.001). In 75.2% of the clinical onsets predicted by ANT LFP, it was 1.37 ± 0.82 s ahead of the prediction of cortical potentials (CPs), and the remainder were 0.84 ± 0.31 s slower than the prediction of CPs. SIGNIFICANCE ANT LFP appears to be an optimal option for the prediction of seizures in temporal lobe epilepsy. It was possible to upgrade the responsive neurostimulation system to emit electrical stimulation in response to the prediction of epileptic seizures based on the changes in the ANT LFP.
Collapse
Affiliation(s)
- An-Chao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Da-Wei Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huan-Guang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui Qiao
- Department of Electrophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lin-Chang Yang
- Institute of Man-Machine and Environmental Engineering, School of Aerospace, Tsinghua University, Beijing, China
| | - Hong-Wei Hao
- Institute of Man-Machine and Environmental Engineering, School of Aerospace, Tsinghua University, Beijing, China
| | - Lu-Ming Li
- Institute of Man-Machine and Environmental Engineering, School of Aerospace, Tsinghua University, Beijing, China
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Covolan L, de Almeida ACG, Amorim B, Cavarsan C, Miranda MF, Aarão MC, Madureira AP, Rodrigues AM, Nobrega JN, Mello LE, Hamani C. Effects of anterior thalamic nucleus deep brain stimulation in chronic epileptic rats. PLoS One 2014; 9:e97618. [PMID: 24892420 PMCID: PMC4043725 DOI: 10.1371/journal.pone.0097618] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/22/2014] [Indexed: 11/19/2022] Open
Abstract
Deep brain stimulation (DBS) has been investigated for the treatment of epilepsy. In rodents, an increase in the latency for the development of seizures and status epilepticus (SE) has been reported in different animal models but the consequences of delivering stimulation to chronic epileptic animals have not been extensively addressed. We study the effects of anterior thalamic nucleus (AN) stimulation at different current intensities in rats rendered epileptic following pilocarpine (Pilo) administration. Four months after Pilo-induced SE, chronic epileptic rats were bilaterally implanted with AN electrodes or had sham-surgery. Stimulation was delivered for 6 h/day, 5 days/week at 130 Hz, 90 µsec. and either 100 µA or 500 µA. The frequency of spontaneous recurrent seizures in animals receiving stimulation was compared to that recorded in the preoperative period and in rats given sham treatment. To investigate the effects of DBS on hippocampal excitability, brain slices from animals receiving AN DBS or sham surgery were studied with electrophysiology. We found that rats treated with AN DBS at 100 µA had a 52% non-significant reduction in the frequency of seizures as compared to sham-treated controls and 61% less seizures than at baseline. Animals given DBS at 500 µA had 5.1 times more seizures than controls and a 2.8 fold increase in seizure rate as compared to preoperative values. In non-stimulated controls, the average frequency of seizures before and after surgery remained unaltered. In vitro recordings have shown that slices from animals previously given DBS at 100 µA had a longer latency for the development of epileptiform activity, shorter and smaller DC shifts, and a smaller spike amplitude compared to non-stimulated controls. In contrast, a higher spike amplitude was recorded in slices from animals given AN DBS at 500 µA.
Collapse
Affiliation(s)
- Luciene Covolan
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Antônio-Carlos G. de Almeida
- Laboratório de Neurociência Experimental e Computacional, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Beatriz Amorim
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clarissa Cavarsan
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maisa Ferreira Miranda
- Laboratório de Neurociência Experimental e Computacional, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Mayra C. Aarão
- Laboratório de Neurociência Experimental e Computacional, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Ana Paula Madureira
- Laboratório de Neurociência Experimental e Computacional, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Antônio M. Rodrigues
- Laboratório de Neurociência Experimental e Computacional, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - José N. Nobrega
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Luiz E. Mello
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clement Hamani
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Abstract
Neurostimulation enables adjustable and reversible modulation of disease symptoms, including those of epilepsy. Two types of brain neuromodulation, comprising anterior thalamic deep brain stimulation and responsive neurostimulation at seizure foci, are supported by Class I evidence of effectiveness, and many other sites in the brain have been targeted in small trials of neurostimulation therapy for seizures. Animal studies have mainly assisted in the identification of potential neurostimulation sites and parameters, but much of the clinical work is only loosely based on fundamental principles derived from the laboratory, and the mechanisms by which brain neurostimulation reduces seizures remain poorly understood. The benefits of stimulation tend to increase over time, with maximal effect seen typically 1-2 years after implantation. Typical reductions of seizure frequency are approximately 40% acutely, and 50-69% after several years. Seizure intensity might also be reduced. Complications from brain neurostimulation are mainly associated with the implantation procedure and hardware, including stimulation-related paraesthesias, stimulation-site infections, electrode mistargeting and, in some patients, triggered seizures or even status epilepticus. Further preclinical and clinical experience with brain stimulation surgery should lead to improved outcomes by increasing our understanding of the optimal surgical candidates, sites and parameters.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room A343, Stanford, CA 94305-5235, USA
| | - Ana Luisa Velasco
- Clinica de Epilepsia, Hospital General de México OD, Calle Dr. Balmis No. 148, Col. Doctores, Cuauhtémoc, 06726 Mexico City, Mexico
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an evidence-based update on the neurostimulation options available for patients with drug-resistant epilepsy in the United States and in European countries. RECENT FINDINGS The field of neurostimulation for epilepsy has grown dramatically since 1997, when vagus nerve stimulation became the first device to be approved for epilepsy by the US Food and Drug Administration (FDA). New data from recently completed randomized controlled trials are available for deep brain stimulation of the anterior thalamus, responsive neurostimulation, and trigeminal nerve stimulation. Although vagus nerve stimulation is the only device currently approved in the United States, deep brain stimulation and responsive neurostimulation devices are awaiting FDA approval. Deep brain stimulation, trigeminal nerve stimulation, and transcutaneous vagus nerve stimulation are now approved for epilepsy in the European Union. In this article, the mechanisms of action, safety, and efficacy of new neurostimulation devices are reviewed, and the key advantages and disadvantages of each are discussed. SUMMARY The exponential growth of the field of neuromodulation for epilepsy is an exciting development; these new devices provide physicians with new options for patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Christopher M DeGiorgio
- Department of Neurology, David Geffen-UCLA School of Medicine, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
18
|
Jankowski MM, Ronnqvist KC, Tsanov M, Vann SD, Wright NF, Erichsen JT, Aggleton JP, O'Mara SM. The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Front Syst Neurosci 2013; 7:45. [PMID: 24009563 PMCID: PMC3757326 DOI: 10.3389/fnsys.2013.00045] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/08/2013] [Indexed: 12/03/2022] Open
Abstract
The anterior thalamic nuclei (ATN), a central component of Papez' circuit, are generally assumed to be key constituents of the neural circuits responsible for certain categories of learning and memory. Supporting evidence for this contention is that damage to either of two brain regions, the medial temporal lobe and the medial diencephalon, is most consistently associated with anterograde amnesia. Within these respective regions, the hippocampal formation and the ATN (anteromedial, anteroventral, and anterodorsal) are the particular structures of interest. The extensive direct and indirect hippocampal-anterior thalamic interconnections and the presence of theta-modulated cells in both sites further support the hypothesis that these structures constitute a neuronal network crucial for memory and cognition. The major tool in understanding how the brain processes information is the analysis of neuronal output at each hierarchical level along the pathway of signal propagation coupled with neuroanatomical studies. Here, we discuss the electrophysiological properties of cells in the ATN with an emphasis on their role in spatial navigation. In addition, we describe neuroanatomical and functional relationships between the ATN and hippocampal formation.
Collapse
Affiliation(s)
- Maciej M Jankowski
- Trinity College Institute of Neuroscience, Trinity College Dublin Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Deep brain stimulation for seizures has been applied to cerebellum, caudate, locus coeruleus, subthalamic nucleus, mammillary bodies, centromedian thalamus, anterior nucleus of thalamus, hippocampus and amygdala, hippocampal commissure, corpus callosum, neocortex, and occasionally to other sites. Animal and clinical studies have primarily investigated seizure prevention and, to a lessersmaller extent, seizure interruption. No studies have yet shown stimulation able to cure epilepsy. A wide variety of stimulation parameters have been employed in multiple different combinations of frequencies, amplitudes, and durations. Literature review identifies at least 52 clinical studies of brain stimulation for epilepsy in 817 patients. Two studies were large, randomized, and controlled, one in the anterior nucleus of thalamus and another at the cortical or hippocampal seizure focus; both of these studies showed efficacy and tolerability of stimulation. Many questions remain. We do not know the mechanisms, the best stimulation parameters, the best patient population, or how to predict benefit in advance. We do not know why benefit of neurostimulation for epilepsy seems to increase over time or whether there are long-term deleterious effects. All of these questions may be answerable with a combination of laboratory research and clinical experience.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
20
|
Fiber tract stimulation can reduce epileptiform activity in an in-vitro bilateral hippocampal slice preparation. Exp Neurol 2012; 240:28-43. [PMID: 23123405 DOI: 10.1016/j.expneurol.2012.10.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/24/2012] [Indexed: 11/21/2022]
Abstract
Mesial temporal lobe epilepsy (MTLE) is a common medically refractory neurological disease that has been treated with electrical stimulation of gray matter with limited success. However, stimulation of a white matter tract connecting the hippocampi could maximize treatment efficacy and extent. We tested low-frequency stimulation (LFS) of a novel target that enables simultaneous targeting of bilateral hippocampi: the ventral hippocampal commissure (VHC) with a novel in-vitro slice preparation containing bilateral hippocampi connected by the VHC. The goal of this study is to understand the role of hippocampal interplay in seizure propagation and reduction by commissural fiber tract stimulation. LFS is applied to the VHC as extracellular and intracellular recording techniques are combined with signal processing to estimate several metrics of epilepsy including: (1) total time occupied by seizure activity (%); (2) seizure duration (s); (3) seizures per minute (#); and (4) power in the ictal (V(2)Hz(-1)); as well as (5) interictal spectra (V(2)Hz(-1)). Bilateral epileptiform activity in this preparation is highly correlated between hippocampi. Application of LFS to the VHC reduces all metrics of epilepsy during treatment in an amplitude and frequency dependent manner. This study lends several insights into the mechanisms of bilateral seizure reduction by LFS of the VHC, including that depolarization blocking, LTD/LTP and GABA(A) are not involved. Importantly, enhanced post-stimulation 1-Hz spiking correlates with long-lasting seizure reduction and both are heightened by targeting bilateral hippocampi via the VHC. Therefore, stimulating bilateral hippocampi via a single electrode in the VHC may provide an effective MTLE treatment.
Collapse
|
21
|
Cheng X, Li T, Zhou H, Zhang Q, Tan J, Gao W, Wang J, Li C, Duan YY. Cortical electrical stimulation with varied low frequencies promotes functional recovery and brain remodeling in a rat model of ischemia. Brain Res Bull 2012; 89:124-32. [PMID: 22850246 DOI: 10.1016/j.brainresbull.2012.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/05/2012] [Accepted: 07/20/2012] [Indexed: 01/30/2023]
Abstract
In this study, we investigated whether fully implantable CES with low current density and varying low-frequency burst impulse train enhances functional recovery and promotes brain remodeling in both the ipsilesional and contralesional cortex. Adult rats received occlusion of the right middle cerebral artery for 120min. One week after ischemia, electrodes were implanted to rats with CES lasting 2 weeks followed by 4-week observation period. After 2-week stimulation and 4-week observation period, body weight (BW) of the rats in CES group was higher than that in no stimulation (NS) group. Limb placement test, foot-fault test and beam walking test demonstrate that CES significantly enhanced functional recovery. Immunohistochemical study has shown that CES enhanced angiogenesis and dendritic sprouting, and suppressed inflammatory response in the ischemic cortex. CES also promoted dendritic sprouting and suppressed inflammatory response in the contralesional cortex. These results suggest the stimulation protocol is safe, and greatly improves functional recovery and brain remodeling in the 4 weeks following 2 weeks stimulation.
Collapse
Affiliation(s)
- Xuan Cheng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang Q, Wu ZC, Yu JT, Yu NN, Zhong XL, Tan L. Mode-dependent effect of high-frequency electrical stimulation of the anterior thalamic nucleus on amygdala-kindled seizures in rats. Neuroscience 2012; 217:113-22. [PMID: 22588003 DOI: 10.1016/j.neuroscience.2012.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
Deep brain stimulation (DBS) is an emerging treatment of epilepsy. Anterior nucleus of the thalamus (ANT) is considered to be an attractive target due to its close connection to the limbic structures and wide regions of neocortex. The present study aimed to investigate the effects of high frequency stimulation (HFS) targeting the ANT on amygdala-kindled seizures in Wistar rats in two different stimulation modes i.e. pre-treatment and post-treatment stimulations, mimicking the scheduled and responsive stimulations in clinical use respectively. When fully-kindled seizures were achieved by daily amygdala kindling (1 s train of 1 ms pulses at 60 Hz), HFS (15 min train of 100 μs pulses at 150 Hz and 450-800 μA) was applied in two modes for 10 days. Bilateral post-treatment with HFS reduced the incidence of generalized seizures and the mean behavioral seizure stage and shortened average afterdischarge duration (ADD) and generalized seizure duration (GSD), while bilateral pre-treatment with HFS resulted in a similar but much weaker inhibition of seizures. On the other hand, we also found the two stimulation modes both increased the afterdischarge threshold (ADT) and the differences of current intensity between ADT and generalized seizure threshold (GST) i.e. Δ(GST-ADT). However, Δ(GST-ADT) increased by at least 20 μA in bilateral post-treatment group, while less in bilateral pre-treatment group. Additionally, unilateral post-treatment with HFS failed to inhibit seizures. Our data show that anti-epileptic effect of bilateral post-treatment with HFS of ANT is much stronger than that of bilateral pre-treatment HFS, indicating bilateral responsive stimulation might be more appropriate for clinical anti-epileptic treatment of ANT HFS.
Collapse
Affiliation(s)
- Q Zhang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Toibaro L, Pereyra M, Pastorino J, Smigliani A, Ocariz F, Ortmann G, Galardi MM, Gori MB, Kochen S. Effect of Unilateral Low-Frequency Stimulation of Hippocampus on Rapid Kindling—Induced Seizure Development in Rats. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/nm.2012.32022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Anticonvulsant effect of unilateral anterior thalamic high frequency electrical stimulation on amygdala-kindled seizures in rat. Brain Res Bull 2011; 87:221-6. [PMID: 22178354 DOI: 10.1016/j.brainresbull.2011.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 12/27/2022]
Abstract
Deep brain stimulation (DBS) is an emerging treatment of epilepsy. Anterior nucleus of the thalamus (ANT) is considered to be an attractive target due to its close connection to the limbic structures and wide regions of neocortex. In this study, we examined the effect of unilateral high frequency stimulation (HFS) of the ANT on amygdala-kindled seizures in Wistar rats. When fully-kindled seizures were achieved by daily amygdala kindling, HFS (15 min train of 100 μs pulses at 200 Hz and 450-800 μA) was delivered to the ipsilateral or contralateral ANT immediately before the kindling stimulation for 15 days. HFS of the ipsilateral ANT significantly decreased the incidence of generalized seizures and the mean behavioral seizure stage and afterdischarge duration (ADD), and shortened cumulative ADD and cumulative generalized seizure duration. Furthermore, HFS of the ipsilateral ANT significantly increased the afterdischarge threshold (ADT). Our data suggest that unilateral HFS of the ANT may be an effective method of inhibiting kindled seizures by suppressing the susceptibility to seizures and generating long lasting anti-epileptic effect preventing the recurrence of kindled seizures, providing an alternative to bilateral ANT DBS for refractory epilepsy.
Collapse
|