1
|
Zhu Y, Li Y, Nakagawara A. UNC5 dependence receptor family in human cancer: A controllable double-edged sword. Cancer Lett 2021; 516:28-35. [PMID: 34077783 DOI: 10.1016/j.canlet.2021.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/02/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
UNC5 receptor family (UNC5A-D) have been identified as dependence receptors whose functions depend on the availability of their ligand netrin-1. Through binding to netrin-1, these receptors transmit signals for cell survival, migration and differentiation, and participate in diverse physiological and pathological processes. In the lack of netrin-1, however, these receptors initiate apoptosis-inducing signal. Accumulating evidence reveals that netrin-1 and its receptors play a role in tumorigenesis and tumor progression. The expression of UNC5 receptor family is down-regulated in a variety of human tumors. Expression aberrance of UNC5 receptor family in tumors is caused by diverse mechanisms including genomic, epigenetic, transcriptional and post-transcriptional regulation. Notably, blocking netrin-1 binding to its receptors induces apoptotic cell death in tumor cells. In this review, we describe the characters and roles of UNC5 family members in tumorigenesis and tumor progression, discussing the regulatory mechanisms underlying down-regulation of UNC5 family members as well as recent implications of targeting netrin-1/UNC5 on potential clinical application for cancer treatment.
Collapse
Affiliation(s)
- Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China.
| | - Yuanyuan Li
- Department of Biomedical Data Science, Stanford University, Stanford, USA
| | - Akira Nakagawara
- Kyushu International Heavy Particle Beam Cancer Radiotherapy Center (SAGA HIMAT Foundation), Tosu, Japan.
| |
Collapse
|
2
|
Huang Y, Zhang Z, Miao M, Kong C. The intracellular domain of UNC5B facilities proliferation and metastasis of bladder cancer cells. J Cell Mol Med 2020; 25:2121-2135. [PMID: 33345442 PMCID: PMC7882925 DOI: 10.1111/jcmm.16172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
The intracellular domain of UNC5B contains both death domain and caspase‐3 cleavage site, and is regarded as a functional domain that mediates apoptosis. However, in our previous studies, we found that the death domain of UNC5B in bladder cancer cells could not be activated to promote apoptosis. In this study, different UNC5B truncates (residue 399‐945, residue 412‐945) were created to explore whether the caspase‐3 cleavage site (site 412), as another potential functional domain of its intracellular portion, could be activated to induce apoptosis in bladder cancer cells. Using mass spectrometry, we acquired a comprehensive and detailed identification of differentially expressed proteins by overexpressing UNC5B and its truncates. Protein‐protein‐interaction (PPI) network analysis was also applied to investigate the aggregation of related proteins and predict the functional changes. EDU assay, apoptosis, xenograft tumour implantation, migration, invasion and tumour metastasis were performed to comprehensively identify the effects of UNC5B truncates on bladder cancer cells. We demonstrate that the intracellular domain of UNC5B promotes cell proliferation in vitro and tumour formation in vivo, by binding to a large number of ribosomal proteins. The overexpression of intracellular domain also facilitates cells to migrate, invade and metastasize by interacting with fibronectin, beta‐catenin and vimentin. In addition, we reveal that overexpressing the intracellular domain of UNC5B cannot bind or activate cleaved caspase‐3 to trigger apoptosis in bladder cancer cells.
Collapse
Affiliation(s)
- Yexiang Huang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Miao Miao
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
UNC5B mediates G2/M phase arrest of bladder cancer cells by binding to CDC14A and P53. Cancer Gene Ther 2020; 27:934-947. [PMID: 32372016 DOI: 10.1038/s41417-020-0175-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
UNC5B is a known tumor suppressor gene in a variety of cancers. As a transmembrane protein, UNC5B also induces apoptosis in a P53-dependent manner. In this study, we demonstrate that UNC5B inhibits proliferation through G2/M phase arrest by mass spectrometry and bioinformatics analysis in bladder cancer cells. By combing with CDC14A and P53, UNC5B dephosphorylated P53 at Ser-315 site. This dephosphorylation facilitated G2/M phase arrest by reducing the expression of cyclin B1 and increasing the expression of p-CDK1, thus inhibiting tumor proliferation. Knockdown of CDC14A suppressed the G2/M phase arrest induced by UNC5B in vitro, and eliminated the inhibitory effect of UNC5B on tumor proliferation in vivo. Our results show that UNC5B-mediated cell cycle arrest may act as a potential treatment for bladder cancer.
Collapse
|
4
|
Han Y, Jiang N, Su T, Yang QC, Yan CC, Ye L, Yuan Q, Zhu PW, Li W, Liu ZG, Shao Y. Netrin-1 promotes epithelium repair in corneal injury. Int J Ophthalmol 2020; 13:206-212. [PMID: 32090028 DOI: 10.18240/ijo.2020.02.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/25/2019] [Indexed: 11/23/2022] Open
Abstract
AIM To explore netrin-1 functions on corneal epithelium in vitro and in vivo. METHODS In vitro the human corneal epithelial (HCE) cells were treated with serum free DMEM-F12 basic media containing 0, 50, 100, 200, 300, 500, 800, and 1000 ng/mL of netrin-1, respectively. The cells viability was detected by cell counting kit-8 (CCK-8). The wound-healing assay was applied to assess the migration proficiency of HCE cells. Flow cytometry was used to analyze the cell-cycle distribution and apoptosis. In vivo, normal c57 (6wk) mice were demarcated with a trephine in the middle of the cornea to produce a 3-mm circular wound. Mice corneas were inflicted no epithelium with a 3-mm wound displayed, but remained the limbal epithelium intact. A blunt scalpel blade was used to remove the corneal epithelian cells, followed by topical netrin-1 application (200 ng/mL), and the group treated by PBS as control. The treated group was injected netrin-1 into the normal c57 mice inferior subconjunctival 4h before trauma. Mouse corneal inflammation and neovascularization were observed under slit lamp microscope. The apoptosis of corneal cells was determined by TUNEL staining. RESLUTS A concentration of 200 ng/mL netrin-1 enhanced 25% of the HCE viability. The relative migration rates were 76.3% and 100% in control and netrin-1 treated group after cultured 72h. Treated with netrin-1 (200 ng/mL) decreased the apoptosis of HCE cells, as well as decreased their percentage from 19.3%±0.57% to 12.7%±0.42% of the total. The remaining wound area was 1.22 mm2 in control group but 0.22 mm2 in the netrin-1 treated group. Exogenous Netrin-1 inhibits apoptosis of corneal epithelial cells of c57 mice. TUNEL-positive cells at the epithelial layer of the corneas of the control and netrin-1 treated c57 mice at 24h after wounding were 43.3% and 16.7% respectively. CONCLUSION Netrin-1 can reduce HCE apoptosis as well as promote its proliferation and migration. Topical application of netrin-1 promotes the injuryed cornea epithelial wound repair and inhibits apoptosis of corneal epithelial cells. These findings may offer potential therapies to repair the defects of corneal epithelial based on netrin-1.
Collapse
Affiliation(s)
- Yun Han
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Nan Jiang
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Ting Su
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Qi-Chen Yang
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Cong-Cong Yan
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Lei Ye
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qing Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Pei-Wen Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wei Li
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Zu-Guo Liu
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
5
|
Wang YL, Wang LZ, Sun JD, Li XR, Wang Z, Sun LR. [Effect of ultraviolet irradiation on the proliferation of acute promyelocytic leukemia cells under hypoxic conditions and related mechanisms]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:491-496. [PMID: 31104669 PMCID: PMC7389421 DOI: 10.7499/j.issn.1008-8830.2019.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To study the effect of 280 nm-LED ultraviolet irradiation on the proliferation of acute promyelocytic leukemia (APL) HL-60 cells under hypoxic conditions and related mechanism. METHODS HL-60 cells in the logarithmic growth phase were selected and divided into control, hypoxia, ultraviolet and hypoxia+ultraviolet groups. The cells in the hypoxia group were treated with cobalt chloride (with a final concentration of 150 μmol/L), those in the ultraviolet group were irradiated by 280 nm-LED ultraviolet with an energy intensity of 30 J/m2, and those in the hypoxia+ultraviolet group were treated with cobalt chloride and then irradiated by 280 nm-LED ultraviolet. After 48 hours of treatment, the cells were placed under an invert microscope to observe cell morphology. CCK-8 assay was used to measure the inhibition rate of cell proliferation. Annexin V-FITC/PI double staining flow cytometry was used to evaluate cell apoptosis. Quantitative real-time PCR was used to measure the mRNA expression of Bcl-2. Each experiment above was repeated three times independently. RESULTS Compared with the control group, the experimental groups showed shrinkage, decreased brightness, and disordered arrangement of cells, and the number of cells decreased over the time of culture. There were significant differences in the inhibition rate of cell proliferation and cell apoptosis rate among the groups (P<0.01), and the hypoxia+ultraviolet group showed the strongest inhibition of cell proliferation and induction of cell apoptosis, followed by the ultraviolet group and the hypoxia group. Compared with the control group, the other three groups had a gradual reduction in the mRNA expression of Bcl-2, and the hypoxia+ultraviolet group had a significantly greater reduction than the hypoxia and ultraviolet groups (P<0.01). CONCLUSIONS Both hypoxia and ultraviolet irradiation can inhibit the proliferation of HL-60 cells and induce cell apoptosis, and ultraviolet irradiation has a better effect on proliferation inhibition and cell apoptosis under hypoxic conditions than under normoxic conditions, possibly by downregulating the mRNA expression of Bcl-2.
Collapse
Affiliation(s)
- Yi-Lin Wang
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
| | | | | | | | | | | |
Collapse
|
6
|
Vio V, Riveros AL, Tapia-Bustos A, Lespay-Rebolledo C, Perez-Lobos R, Muñoz L, Pismante P, Morales P, Araya E, Hassan N, Herrera-Marschitz M, Kogan MJ. Gold nanorods/siRNA complex administration for knockdown of PARP-1: a potential treatment for perinatal asphyxia. Int J Nanomedicine 2018; 13:6839-6854. [PMID: 30498346 PMCID: PMC6207385 DOI: 10.2147/ijn.s175076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Perinatal asphyxia interferes with neonatal development, resulting in long-term deficits associated with systemic and neurological diseases. Despite the important role of poly (ADP-ribose) polymerase 1 (PARP-1) in the regulation of gene expression and DNA repair, overactivation of PARP-1 in asphyxia-exposed animals worsens the ATP-dependent energetic crisis. Inhibition of PARP-1 offers a therapeutic strategy for diminishing the effects of perinatal asphyxia. Methods We designed a nanosystem that incorporates a specific siRNA for PARP-1 knockdown. The siRNA was complexed with gold nanorods (AuNR) conjugated to the peptide CLPFFD for brain targeting. Results The siRNA was efficiently delivered into PC12 cells, resulting in gene silencing. The complex was administered intraperitoneally in vivo to asphyxia-exposed rat pups, and the ability of the AuNR-CLPFFD/siRNA complex to reach the brain was demonstrated. Conclusion The combination of a nanosystem for delivery and a specific siRNA for gene silencing resulted in effective inhibition of PARP-1 in vivo.
Collapse
Affiliation(s)
- Valentina Vio
- Department of Pharmacological and Toxicology Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile, .,Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile,
| | - Ana L Riveros
- Department of Pharmacological and Toxicology Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile,
| | - Andrea Tapia-Bustos
- Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile,
| | - Carolyne Lespay-Rebolledo
- Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile,
| | - Ronald Perez-Lobos
- Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile,
| | - Luis Muñoz
- Chemical Meteorology Section, Comisión Chilena de Energía Nuclear, Santiago, Chile
| | - Paola Pismante
- Chemical Meteorology Section, Comisión Chilena de Energía Nuclear, Santiago, Chile
| | - Paola Morales
- Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile, .,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Natalia Hassan
- Department of Pharmacological and Toxicology Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile, .,Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Mario Herrera-Marschitz
- Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile,
| | - Marcelo J Kogan
- Department of Pharmacological and Toxicology Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile, .,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile,
| |
Collapse
|
7
|
Bianco S, Mancardi D, Merlino A, Bussolati B, Munaron L. Hypoxia and hydrogen sulfide differentially affect normal and tumor-derived vascular endothelium. Redox Biol 2017; 12:499-504. [PMID: 28340463 PMCID: PMC5369009 DOI: 10.1016/j.redox.2017.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND endothelial cells play a key role in vessels formation both under physiological and pathological conditions. Their behavior is influenced by blood components including gasotransmitters (H2S, NO and CO). Tumor cells are subjected to a cyclic shift between pro-oxidative and hypoxic state and, in this scenario, H2S can be both cytoprotective and detrimental depending on its concentration. H2S effects on tumors onset and development is scarcely studied, particularly concerning tumor angiogenesis. We previously demonstrated that H2S is proangiogenic for tumoral but not for normal endothelium and this may represent a target for antiangiogenic therapeutical strategies. METHODS in this work, we investigate cell viability, migration and tubulogenesis on human EC derived from two different tumors, breast and renal carcinoma (BTEC and RTEC), compared to normal microvascular endothelium (HMEC) under oxidative stress, hypoxia and treatment with exogenous H2S. RESULTS all EC types are similarly sensitive to oxidative stress induced by hydrogen peroxide; chemical hypoxia differentially affects endothelial viability, that results unaltered by real hypoxia. H2S neither affects cell viability nor prevents hypoxia and H2O2-induced damage. Endothelial migration is enhanced by hypoxia, while tubulogenesis is inhibited for all EC types. H2S acts differentially on EC migration and tubulogenesis. CONCLUSIONS these data provide evidence for a great variability of normal and altered endothelium in response to the environmental conditions.
Collapse
Affiliation(s)
- Serena Bianco
- Department of Life Sciences & Systems Biology, University of Torino, Italy.
| | - Daniele Mancardi
- Department of Clinical and Biological Sciences, University of Torino, Italy.
| | - Annalisa Merlino
- Department of Life Sciences & Systems Biology, University of Torino, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy.
| | - Luca Munaron
- Department of Life Sciences & Systems Biology, University of Torino, Italy; Nanostructured Interfaces and Surfaces Centre of Excellence (NIS), University of Torino, Italy.
| |
Collapse
|
8
|
Wang ZK, Liu FF, Wang Y, Jiang XM, Yu XF. Let-7a gene knockdown protects against cerebral ischemia/reperfusion injury. Neural Regen Res 2016; 11:262-9. [PMID: 27073379 PMCID: PMC4810990 DOI: 10.4103/1673-5374.177734] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The microRNA (miRNA) let-7 was one of the first miRNAs to be discovered, and is highly conserved and widely expressed among species. let-7 expression increases in brain tissue after cerebral ischemia/reperfusion injury; however, no studies have reported let-7 effects on nerve injury after cerebral ischemia/reperfusion injury. To investigate the effects of let-7 gene knockdown on cerebral ischemia/reperfusion injury, we established a rat model of cerebral ischemia/reperfusion injury. Quantitative reverse transcription-polymerase chain reaction demonstrated that 12 hours after cerebral ischemia/reperfusion injury, let-7 expression was up-regulated, peaked at 24 hours, and was still higher than that in control rats after 72 hours. Let-7 gene knockdown in rats suppressed microglial activation and inflammatory factor release, reduced neuronal apoptosis and infarct volume in brain tissue after cerebral ischemia/reperfusion injury. Western blot assays and luciferase assays revealed that mitogen-activated protein kinase phosphatase-1 (MKP1) is a direct target of let-7. Let-7 enhanced phosphorylated p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) expression by down-regulating MKP1. These findings suggest that knockdown of let-7 inhibited the activation of p38 MAPK and JNK signaling pathways by up-regulating MKP1 expression, reduced apoptosis and the inflammatory reaction, and exerted a neuroprotective effect following cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zhong-Kun Wang
- Department of Neurology, First Hospital, Jilin University, Changchun, Jilin Province, China
| | - Fang-Fang Liu
- Department of Neurology, Jilin Central Hospital, Jilin, Jilin Province, China
| | - Yu Wang
- Department of Hepatopancreatobiliary Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xin-Mei Jiang
- Department of Neurology, First Hospital, Jilin University, Changchun, Jilin Province, China
| | - Xue-Fan Yu
- Department of Neurology, First Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
9
|
Phatak VM, Muller PAJ. Metal toxicity and the p53 protein: an intimate relationship. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00117f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The relationship between p53, ROS and transition metals.
Collapse
|
10
|
Wang P, Du B, Yin W, Wang X, Zhu W. Resveratrol attenuates CoCl2-induced cochlear hair cell damage through upregulation of Sirtuin1 and NF-κB deacetylation. PLoS One 2013; 8:e80854. [PMID: 24278331 PMCID: PMC3836748 DOI: 10.1371/journal.pone.0080854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022] Open
Abstract
The goals of this study were to investigate the effects of hypoxia on cochlear hair cell damage, and to explore the role of sirtuin1 in hypoxia-induced hair cell damage. Cochlear organotypic cultures from postnatal day 4 rats were used in this study. Hypoxia was induced by treating cochlear explants with CoCl2. Cochlear cultures were treated with CoCl2 alone or in combination with the sirtuin1 activator resveratrol and the sirtuin1 inhibitor sirtinol. Hair cell damage was identified by phalloidin staining and imaged using scanning electron microscopy. RT-PCR and Western blot analyses were used to detect the expression of sirtuin1 and acetylated nuclear factor-κB (NF-κB). Low concentrations of CoCl2 (100-200 μM) did not cause an obvious change in the number and morphology of hair cells, whereas higher concentrations of CoCl2 (300-400 μM) induced swelling of hair cells, accompanied by cell loss. Increased sirtuin1 expression was induced by CoCl2 at 100 to 200 μM, but not at 400 μM. NF-κB acetylation was significantly increased in explants treated with 400 μM CoCl2. Pretreatment with resveratrol prevented CoCl2-induced hair cell loss and acetylation of NF-κB. The protective effect of resveratrol was significantly reduced by sirtinol. CoCl2 induces hair cell damage in organotypic cochleae cultures. Resveratrol attenuates CoCl2-induced cochlear hair cell damage possibly via activation of sirtuin1, which deacetylates NF-κB.
Collapse
Affiliation(s)
- Ping Wang
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun, China
| | - Bo Du
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun, China
| | - Wanzhong Yin
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun, China
| | - Xinrui Wang
- Key Laboratory of Zoonoses, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, China
| | - Wei Zhu
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|