1
|
Meng Y, Xu D, Zhang W, Meng W, Lan X, Wang X, Li M, Zhang X, Zhao Y, Yang H, Zhang R, Zhen Z. Effect of Early Swimming on the Behavior and Striatal Transcriptome of the Shank3 Knockout Rat Model of Autism. Neuropsychiatr Dis Treat 2022; 18:681-694. [PMID: 35387206 PMCID: PMC8979754 DOI: 10.2147/ndt.s357338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a developmental disorder characterized by social behavior deficits and stereotyped behaviors in childhood that lacks satisfactory medical intervention. Early swimming intervention is a noninvasive method combining enriched environment and exercise, which has been proven to improve brain development in young children and to treat neurodevelopmental diseases. METHODS In this study, we tested the autism-like behavior of rats with deletions in exons 11-21 of the Shank3 gene and evaluated the effect of early swimming intervention (from postnatal day 8 to 60) on the behavior of this animal model of autism. In addition, the transcriptomes of the striatal tissues of wild-type, Shank3 knockout and Shank3 knockout swimming groups rats were analyzed. RESULTS Shank3 knockout rats exhibit core symptoms of autism, and early swimming improved the social and stereotyped behaviors in this autism rat model. Transcriptomics results revealed that compared to the wild-type group, 291 differentially expressed genes (DEGs) were identified in the striatum of the Shank3 knockout group. Compared to Shank3 knockout group, 534 DEGs were identified in the striatum of Shank3 knockout swimming group. The DEGs annotated by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway shows that the impacts of Shank3 deletion were primarily reflected in synaptic structure, development, morphology, receptor function and signaling, and swimming primarily changed the terms related to the synapses in the striatum of Shank3 knockout rats, including the morphology, structure, composition, development and regulation of synapses. CONCLUSION Early swimming intervention can ameliorate behavioral abnormalities caused by Shank3 knockout, by a mechanism that may involve the process of striatal synaptic development and should be further investigated.
Collapse
Affiliation(s)
- Yunchen Meng
- College of P.E and Sports, Beijing Normal University, Beijing, People's Republic of China
| | - Dan Xu
- College of P.E and Sports, Beijing Normal University, Beijing, People's Republic of China
| | - Weinan Zhang
- College of P.E and Sports, Beijing Normal University, Beijing, People's Republic of China
| | - Wenshu Meng
- College of Life Sciences, Beijing Normal University, Beijing, People's Republic of China
| | - Xingyu Lan
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, People's Republic of China
| | - Xiaoxi Wang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, People's Republic of China
| | - Mingjuan Li
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, People's Republic of China
| | - Xiaoyan Zhang
- College of P.E and Sports, Beijing Normal University, Beijing, People's Republic of China
| | - Yu Zhao
- College of P.E and Sports, Beijing Normal University, Beijing, People's Republic of China
| | - Haodong Yang
- College of P.E and Sports, Beijing Normal University, Beijing, People's Republic of China
| | - Rong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, People's Republic of China.,Neuroscience Research Institute, Peking University, Beijing, People's Republic of China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, People's Republic of China.,Autism Research Center of Peking University Health Science Center, Beijing, People's Republic of China
| | - Zhiping Zhen
- College of P.E and Sports, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Araújo JE, Jorge S, Santos HM, Chiechi A, Galstyan A, Lodeiro C, Diniz M, Kleinman MT, Ljubimova JY, Capelo JL. Proteomic changes driven by urban pollution suggest particulate matter as a deregulator of energy metabolism, mitochondrial activity, and oxidative pathways in the rat brain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:839-848. [PMID: 31412487 DOI: 10.1016/j.scitotenv.2019.06.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
The adverse effects of air pollution have been long studied in the lung and respiratory systems, but the molecular changes that this causes at the central nervous system level have yet to be fully investigated and understood. To explore the evolution with time of protein expression levels in the brain of rats exposed to particulate matter of different sizes, we carried out two-dimensional gel electrophoresis followed by determination of dysregulated proteins through Coomassie blue staining-based densities (SameSpots software) and subsequent protein identification using MALDI-based mass spectrometry. Expression differences in dysregulated proteins were found to be statistically significant with p-value <0.05. A systems biology-based approach was utilized to determine critical biochemical pathways involved in the rats' brain response. Our results suggest that rats' brains have a particulate matter size dependent-response, being the mitochondrial activity and the astrocyte function severely affected. Our proteomic study confirms the dysregulation of different biochemical pathways involving energy metabolism, mitochondrial activity, and oxidative pathways as some of the main effects of PM exposure on the rat brain. SIGNIFICANCE: Rat brains exposed to particulate matter with origin in car engines are affected in two main areas: mitochondrial activity, by the dysregulation of many pathways linked to the respiratory chain, and neuronal and astrocytic function, which stimulates brain changes triggering tumorigenesis and neurodegeneration.
Collapse
Affiliation(s)
- J E Araújo
- BIOSCOPE Group, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516, Caparica, Portugal
| | - Susana Jorge
- BIOSCOPE Group, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516, Caparica, Portugal
| | - H M Santos
- BIOSCOPE Group, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516, Caparica, Portugal
| | - A Chiechi
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA 90048, United States
| | - A Galstyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516, Caparica, Portugal
| | - M Diniz
- UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - M T Kleinman
- Department of Medicine, University of California at Irvine, 19182 Jamboree Rd. FRF, 100, Irvine, CA, United States
| | - Julia Y Ljubimova
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA 90048, United States
| | - J L Capelo
- BIOSCOPE Group, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516, Caparica, Portugal.
| |
Collapse
|
4
|
Chen L, Yang Y, Wang Y, Qiu L, Xia H, Wang A, Liu H, Shi H, Chen K. Proteomic response of the rat liver in differential swimming modes. Clin Exp Pharmacol Physiol 2018; 45:581-590. [DOI: 10.1111/1440-1681.12905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Liang Chen
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province China
| | - Yanhua Yang
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province China
| | - Yiting Wang
- College of Athletic Sports; Yangzhou University; Yangzhou Jiangsu Province China
| | - Lipeng Qiu
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province China
| | - Hengchuan Xia
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province China
| | - Aiai Wang
- College of Athletic Sports; Yangzhou University; Yangzhou Jiangsu Province China
| | - Hailong Liu
- College of Life Sciences; Nanjing Normal University; Nanjing Jiangsu Province China
| | - Hongfei Shi
- Second Clinical College of Medicine; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
| | - Keping Chen
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province China
| |
Collapse
|
5
|
Ravikiran T, Sowbhagya R, Anupama SK, Anand S, Bhagyalakshmi D. Age-related changes in the brain antioxidant status: modulation by dietary supplementation of Decalepis hamiltonii and physical exercise. Mol Cell Biochem 2016; 419:103-13. [PMID: 27379504 DOI: 10.1007/s11010-016-2754-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
The synergistic effects of physical exercise and diet have profound benefits on brain function. The present study was aimed to determine the effects of exercise and Decalepis hamiltonii (Dh) on age-related responses on the antioxidant status in discrete regions of rat brain. Male Wistar albino rats of 4 and 18 months old were orally supplemented with Dh extract and swim trained at 3 % intensity for 30 min/day, 5 days/week, for a period of 30 days. Supplementation of 100 mg Dh aqueous extract/kg body weight and its combination with exercise significantly elevated the antioxidant enzyme activities irrespective of age. Age-related and region-specific changes were observed in superoxide levels, and protein carbonyl and malondialdehyde contents, and were found to be decreased in both trained and supplemented groups. Levels of total thiols, protein, and nonprotein thiols decreased with age and significantly increased in the SW-T(+100 mg) groups. Our results demonstrated that the interactive effects of two treatments enhanced the antioxidant status and decreased the risk of protein and lipid oxidation in the rat brain.
Collapse
Affiliation(s)
- Tekupalli Ravikiran
- Department of Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India.
| | | | | | - Santosh Anand
- Department of Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India
| | - Dundaiah Bhagyalakshmi
- Department of Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India
| |
Collapse
|