1
|
Ruszkiewicz JA, Zhang Z, Gonçalves FM, Tizabi Y, Zelikoff JT, Aschner M. Neurotoxicity of e-cigarettes. Food Chem Toxicol 2020; 138:111245. [PMID: 32145355 PMCID: PMC7089837 DOI: 10.1016/j.fct.2020.111245] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
It appears that electronic cigarettes (EC) are a less harmful alternative to conventional cigarette (CC) smoking, as they generate substantially lower levels of harmful carcinogens and other toxic compounds. Thus, switching from CC to EC may be beneficial for smokers. However, recent accounts of EC- or vaping-associated lung injury (EVALI) has raised concerns regarding their adverse health effects. Additionally, the increasing popularity of EC among vulnerable populations, such as adolescents and pregnant women, calls for further EC safety evaluation. In this state-of-the-art review, we provide an update on recent findings regarding the neurological effects induced by EC exposure. Moreover, we discuss possible neurotoxic effects of nicotine and numerous other chemicals which are inherent both to e-liquids and EC aerosols. We conclude that in recognizing pertinent issues associated with EC usage, both government and scientific researchers must address this public health issue with utmost urgency.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Filipe Marques Gonçalves
- Biochemistry Graduate Program, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, United States
| | - Judith T Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, Manhattan, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
2
|
Slotkin TA, Skavicus S, Ko A, Levin ED, Seidler FJ. The Developmental Neurotoxicity of Tobacco Smoke Can Be Mimicked by a Combination of Nicotine and Benzo[a]Pyrene: Effects on Cholinergic and Serotonergic Systems. Toxicol Sci 2019; 167:293-304. [PMID: 30247698 DOI: 10.1093/toxsci/kfy241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tobacco smoke contains polycyclic aromatic hydrocarbons (PAHs) in addition to nicotine. We compared the developmental neurotoxicity of nicotine to that of the PAH archetype, benzo[a]pyrene (BaP), and also evaluated the effects of combined exposure to assess whether PAHs might exacerbate the adverse effects of nicotine. Pregnant rats were treated preconception through the first postnatal week, modeling nicotine concentrations in smokers and a low BaP dose devoid of systemic effects. We conducted evaluations of acetylcholine (ACh) and serotonin (5-hydroxytryptamine, 5HT) systems in brain regions from adolescence through full adulthood. Nicotine or BaP alone impaired indices of ACh presynaptic activity, accompanied by upregulation of nicotinic ACh receptors and 5HT receptors. Combined treatment elicited a greater deficit in ACh presynaptic activity than that seen with either agent alone, and upregulation of nAChRs and 5HT receptors was impaired or absent. The individual effects of nicotine and BaP accounted for only 60% of the combination effects, which thus displayed unique properties. Importantly, the combined nicotine + BaP exposure recapitulated the effects of tobacco smoke, distinct from nicotine. Our results show that the effects of nicotine on development of ACh and 5HT systems are worsened by BaP coexposure, and that combination of the two agents contributes to the greater impact of tobacco smoke on the developing brain. These results have important implications for the relative safety in pregnancy of nicotine-containing products compared with combusted tobacco, both for active maternal smoking and secondhand exposure, and for the effects of such agents in "dirty" environments with high PAH coexposure.
Collapse
Affiliation(s)
| | | | - Ashley Ko
- Department of Pharmacology & Cancer Biology
| | - Edward D Levin
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
3
|
Reduced adolescent risk-assessment and lower nicotinic beta-2 expression in rats exposed to nicotine through lactation by forcedly drinking dams. Neuroscience 2019; 413:64-76. [DOI: 10.1016/j.neuroscience.2019.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/06/2023]
|
4
|
Abbasi A, Kukia NR, Froushani SMA, Hashemi SM. Nicotine and caffeine alter the effects of the LPS- primed mesenchymal stem cells on the co-cultured neutrophils. Life Sci 2018. [DOI: 10.1016/j.lfs.2018.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Khezri S, Abtahi Froushani SM, Shahmoradi M. Nicotine Augments the Beneficial Effects of Mesenchymal Stem Cell-based Therapy in Rat Model of Multiple Sclerosis. Immunol Invest 2017; 47:113-124. [DOI: 10.1080/08820139.2017.1391841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shiva Khezri
- Department of biology, Faculty of science, Urmia University, Urmia, Iran
| | | | - Mozhgan Shahmoradi
- Department of biology, Faculty of science, Urmia University, Urmia, Iran
| |
Collapse
|
6
|
Bolton JL, Marinero S, Hassanzadeh T, Natesan D, Le D, Belliveau C, Mason SN, Auten RL, Bilbo SD. Gestational Exposure to Air Pollution Alters Cortical Volume, Microglial Morphology, and Microglia-Neuron Interactions in a Sex-Specific Manner. Front Synaptic Neurosci 2017; 9:10. [PMID: 28620294 PMCID: PMC5449437 DOI: 10.3389/fnsyn.2017.00010] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/09/2017] [Indexed: 12/22/2022] Open
Abstract
Microglia are the resident immune cells of the brain, important for normal neural development in addition to host defense in response to inflammatory stimuli. Air pollution is one of the most pervasive and harmful environmental toxicants in the modern world, and several large scale epidemiological studies have recently linked prenatal air pollution exposure with an increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD). Diesel exhaust particles (DEP) are a primary toxic component of air pollution, and markedly activate microglia in vitro and in vivo in adult rodents. We have demonstrated that prenatal exposure to DEP in mice, i.e., to the pregnant dams throughout gestation, results in a persistent vulnerability to behavioral deficits in adult offspring, especially in males, which is intriguing given the greater incidence of ASD in males to females (∼4:1). Moreover, there is a striking upregulation of toll-like receptor (TLR) 4 gene expression within the brains of the same mice, and this expression is primarily in microglia. Here we explored the impact of gestational exposure to DEP or vehicle on microglial morphology in the developing brains of male and female mice. DEP exposure increased inflammatory cytokine protein and altered the morphology of microglia, consistent with activation or a delay in maturation, only within the embryonic brains of male mice; and these effects were dependent on TLR4. DEP exposure also increased cortical volume at embryonic day (E)18, which switched to decreased volume by post-natal day (P)30 in males, suggesting an impact on the developing neural stem cell niche. Consistent with this hypothesis, we found increased microglial-neuronal interactions in male offspring that received DEP compared to all other groups. Taken together, these data suggest a mechanism by which prenatal exposure to environmental toxins may affect microglial development and long-term function, and thereby contribute to the risk of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jessica L Bolton
- Department of Psychology and Neuroscience, Duke University, DurhamNC, United States
| | - Steven Marinero
- Department of Neurobiology, Duke University Medical Center, DurhamNC, United States
| | - Tania Hassanzadeh
- Department of Psychology and Neuroscience, Duke University, DurhamNC, United States
| | - Divya Natesan
- Department of Psychology and Neuroscience, Duke University, DurhamNC, United States
| | - Dominic Le
- Department of Psychology and Neuroscience, Duke University, DurhamNC, United States
| | - Christine Belliveau
- Department of Psychology and Neuroscience, Duke University, DurhamNC, United States
| | - S N Mason
- Department of Pediatrics, Division of Neonatal Medicine, Duke University Medical Center, DurhamNC, United States
| | - Richard L Auten
- Department of Pediatrics, Division of Neonatal Medicine, Duke University Medical Center, DurhamNC, United States
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, DurhamNC, United States.,Department of Neurobiology, Duke University Medical Center, DurhamNC, United States.,Department of Pediatrics and Program in Neuroscience, Lurie Center for Autism, Harvard Medical School, Massachusetts General Hospital for Children, BostonMA, United States
| |
Collapse
|
7
|
Abreu-Villaça Y, Levin ED. Developmental neurotoxicity of succeeding generations of insecticides. ENVIRONMENT INTERNATIONAL 2017; 99:55-77. [PMID: 27908457 PMCID: PMC5285268 DOI: 10.1016/j.envint.2016.11.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 05/19/2023]
Abstract
Insecticides are by design toxic. They must be toxic to effectively kill target species of insects. Unfortunately, they also have off-target toxic effects that can harm other species, including humans. Developmental neurotoxicity is one of the most prominent off-target toxic risks of insecticides. Over the past seven decades several classes of insecticides have been developed, each with their own mechanisms of effect and toxic side effects. This review covers the developmental neurotoxicity of the succeeding generations of insecticides including organochlorines, organophosphates, pyrethroids, carbamates and neonicotinoids. The goal of new insecticide development is to more effectively kill target species with fewer toxic side effects on non-target species. From the experience with the developmental neurotoxicity caused by the generations of insecticides developed in the past advice is offered how to proceed with future insecticide development to decrease neurotoxic risk.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Departamento de Ciências Fisiologicas, Universidade do Estado do Rio de Janeiro (UERJ), RJ, Brazil
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
8
|
Silva JG, Boareto AC, Schreiber AK, Redivo DDB, Gambeta E, Vergara F, Morais H, Zanoveli JM, Dalsenter PR. Chlorpyrifos induces anxiety-like behavior in offspring rats exposed during pregnancy. Neurosci Lett 2017; 641:94-100. [PMID: 28130185 DOI: 10.1016/j.neulet.2017.01.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/27/2022]
Abstract
Chlorpyrifos is a pesticide, member of the organophosphate class, widely used in several countries to manage insect pests on many agricultural crops. Currently, chlorpyrifos health risks are being reevaluated due to possible adverse effects, especially on the central nervous system. The aim of this study was to investigate the possible action of this pesticide on the behaviors related to anxiety and depression of offspring rats exposed during pregnancy. Wistar rats were treated orally with chlorpyrifos (0.01, 0.1, 1 and 10mg/kg/day) on gestational days 14-20. Male offspring behavior was evaluated on post-natal days 21 and 70 by the elevated plus-maze test, open field test and forced swimming test. The results demonstrated that exposure to 0.1, 1 or 10mg/kg/day of chlorpyrifos could induce anxiogenic-like, but not depressive-like behavior at post-natal day 21, without causing fetal toxicity. This effect was reversed on post-natal day 70.
Collapse
Affiliation(s)
- Jonas G Silva
- Department of Chemistry and Biology, Federal Technological University of Paraná, Curitiba, Paraná 81280-340, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná 81540-990 Brazil.
| | - Ana C Boareto
- Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná 81540-990 Brazil
| | - Anne K Schreiber
- Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná 81540-990 Brazil
| | - Daiany D B Redivo
- Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná 81540-990 Brazil
| | - Eder Gambeta
- Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná 81540-990 Brazil
| | - Fernanda Vergara
- Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná 81540-990 Brazil
| | - Helen Morais
- Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná 81540-990 Brazil
| | - Janaína M Zanoveli
- Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná 81540-990 Brazil
| | - Paulo R Dalsenter
- Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná 81540-990 Brazil
| |
Collapse
|
9
|
Towards in vitro DT/DNT testing: Assaying chemical susceptibility in early differentiating NT2 cells. Toxicology 2015; 338:69-76. [PMID: 26498558 DOI: 10.1016/j.tox.2015.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 11/21/2022]
Abstract
Human pluripotent embryonal carcinoma (NT2) cells are increasingly considered as a suitable model for in vitro toxicity testing, e.g. developmental toxicity and neurotoxicity (DT/DNT) studies, as they undergo neuronal differentiation upon stimulation with retinoic acid (RA) and permit toxicity testing at different stages of maturation. NT2 cells have recently been reported to show specific changes in dielectric resistance profiles during differentiation which can be observed as early as 24h upon RA-stimulation. These observations suggest altered susceptibility to chemicals at an early stage of differentiation. However, chemical susceptibility of early differentiating NT cells has not yet been studied. To address this question, we have established a cell fitness screening assay based on the analysis of intracellular ATP levels and we applied the assay in a large-scale drug screening experiment in NT2 stem cells and early differentiating NT2 cells. Subsequent analysis of ranked fitness phenotypes revealed 19 chemicals with differential toxicity profile in early differentiating NT2 cells. To evaluate whether any of the identified drugs have previously been associated with DT/DNT, we conducted a literature search on the identified molecules and quantified the fraction of chemicals assigned to the FDA (Food and Drug Administration) pregnancy risk categories (PRC) N, A, B, C, D, and X in the hit list and the small molecule library. While the fractions of the categories N and B were decreased (0.81 and 0.35-fold), the classes C, D and X were increased (1.35, 1.47 and 3.27-fold) in the hit list compared to the chemical library. From these data as well as from the literature review, identifying large fractions of chemicals being directly (∼42%) and indirectly associated with DT/DNT (∼32%), we conclude that our method may be beneficial to systematic in vitro-based primary screening for developmental toxicants and neurotoxicants and we propose cell fitness screening in early differentiating NT2 cells as a strategy for evaluating chemical susceptibility at different stages of differentiation to reduce animal testing in the context of the 3Rs.
Collapse
|
10
|
Adedara IA, Klimaczewski CV, Barbosa NBV, Farombi EO, Souza DO, Rocha JBT. Influence of diphenyl diselenide on chlorpyrifos-induced toxicity in Drosophila melanogaster. J Trace Elem Med Biol 2015; 32:52-9. [PMID: 26302912 DOI: 10.1016/j.jtemb.2015.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/06/2015] [Accepted: 05/15/2015] [Indexed: 01/06/2023]
Abstract
Exposure to chlorpyrifos (CPF) poses several harmful effects to human and animal health. The present study investigated the influence of diphenyl diselenide (DPDS) on CPF-induced toxicity in Drosophila melanogaster. Firstly, the time course lethality response of virgin flies (2- to 3-day-old) to CPF (0.075-0.6μg/g) and DPDP (5-40μmol/kg) in the diet for 28 consecutive days were investigated. Subsequently, the protective effect of DPDS (10, 20 and 40μmol/kg) on CPF (0.15μg/g)-induced mortality, locomotor deficits, neurotoxicity and oxidative stress was assessed in a co-exposure paradigm for 7 days. Results showed that CPF exposure significantly decreased the percent live flies in a time- and concentration-dependent manner, whereas the percent live flies with DPDS treatment was not statistically different from control following 28 days of treatment. In the co-exposure study, CPF significantly increased flies mortality while the survivors exhibited significant locomotor deficits with decreased acetylcholinesterase (AChE) activity. Dietary supplementation with DPDS was associated with marked decrease in mortality, improvement in locomotor activity and restoration of AChE activity in CPF-exposed flies. Moreover, CPF exposure significantly decreased catalase and glutathione-S-transferase activities, total thiol level with concomitant significant elevation in the levels of reactive oxygen species and thiobarbituric acid reactive substances in the head and body regions of the treated flies. Dietary supplementation with DPDS significantly improved the antioxidant status and prevented CPF-induced oxidative stress, thus demonstrating the protective effect of DPDS in CPF-treated flies.
Collapse
Affiliation(s)
- Isaac A Adedara
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Claudia V Klimaczewski
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Nilda B V Barbosa
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Diogo O Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Slotkin TA, Skavicus S, Seidler FJ. Prenatal drug exposures sensitize noradrenergic circuits to subsequent disruption by chlorpyrifos. Toxicology 2015; 338:8-16. [PMID: 26419632 DOI: 10.1016/j.tox.2015.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 11/20/2022]
Abstract
We examined whether nicotine or dexamethasone, common prenatal drug exposures, sensitize the developing brain to chlorpyrifos. We gave nicotine to pregnant rats throughout gestation at a dose (3mg/kg/day) producing plasma levels typical of smokers; offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1mg/kg) that produces minimally-detectable inhibition of brain cholinesterase activity. In a parallel study, we administered dexamethasone to pregnant rats on gestational days 17-19 at a standard therapeutic dose (0.2mg/kg) used in the management of preterm labor, followed by postnatal chlorpyrifos. We evaluated cerebellar noradrenergic projections, a known target for each agent, and contrasted the effects with those in the cerebral cortex. Either drug augmented the effect of chlorpyrifos, evidenced by deficits in cerebellar β-adrenergic receptors; the receptor effects were not due to increased systemic toxicity or cholinesterase inhibition, nor to altered chlorpyrifos pharmacokinetics. Further, the deficits were not secondary adaptations to presynaptic hyperinnervation/hyperactivity, as there were significant deficits in presynaptic norepinephrine levels that would serve to augment the functional consequence of receptor deficits. The pretreatments also altered development of cerebrocortical noradrenergic circuits, but with a different overall pattern, reflecting the dissimilar developmental stages of the regions at the time of exposure. However, in each case the net effects represented a change in the developmental trajectory of noradrenergic circuits, rather than simply a continuation of an initial injury. Our results point to the ability of prenatal drug exposure to create a subpopulation with heightened vulnerability to environmental neurotoxicants.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Samantha Skavicus
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
12
|
Slotkin TA, Skavicus S, Levin ED, Seidler FJ. Prenatal nicotine changes the response to postnatal chlorpyrifos: Interactions targeting serotonergic synaptic function and cognition. Brain Res Bull 2015; 111:84-96. [PMID: 25592617 DOI: 10.1016/j.brainresbull.2015.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 11/25/2022]
Abstract
Nicotine and chlorpyrifos are developmental neurotoxicants that target serotonin systems. We examined whether prenatal nicotine exposure alters the subsequent response to chlorpyrifos given postnatally. Pregnant rats received nicotine throughout gestation at 3mg/kg/day, a regimen designed to achieve plasma levels seen in smokers; chlorpyrifos was given to pups on postnatal days (PN) 1-4 at 1mg/kg, just above the detection threshold for brain cholinesterase inhibition. We assessed long-term effects from adolescence (PN30) through full adulthood (PN150), measuring the expression of serotonin receptors and serotonin turnover (index of presynaptic impulse activity) in cerebrocortical brain regions encompassing the projections that are known targets for nicotine and chlorpyrifos. Nicotine or chlorpyrifos individually increased the expression of serotonin receptors, with greater effects on males than on females and with distinct temporal and regional patterns indicative of adaptive synaptic changes rather than simply an extension of initial injury. This interpretation was confirmed by our finding an increase in serotonin turnover, connoting presynaptic serotonergic hyperactivity. Animals receiving the combined treatment showed a reduction in these adaptive effects on receptor binding and turnover relative to the individual agents, or even an effect in the opposite direction; further, normal sex differences in serotonin receptor concentrations were dissipated or reversed, an effect that was confirmed by behavioral evaluations in the Novel Objection Recognition Test. In addition to the known liabilities associated with maternal smoking during pregnancy, our results point to additional costs in the form of heightened vulnerability to neurotoxic chemicals encountered later in life.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Samantha Skavicus
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Edward D Levin
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|