1
|
Abu-Elfotuh K, Mahran Y, Bayoumie El Gazzar W, Youssef HS, Hamdan AME, Albalawi TM, Alsunbul M, ALQahtani R, Mohammed AA. Targeting Ferroptosis/Nrf2 Pathway Ameliorates AlCl 3-Induced Alzheimer's Disease in Rats: Neuroprotective Effect of Morin Hydrate, Zeolite Clinoptilolite, and Physical Plus Mental Activities. Int J Mol Sci 2025; 26:1260. [PMID: 39941034 PMCID: PMC11818523 DOI: 10.3390/ijms26031260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Alzheimer's disease (AD) is a significant health challenge in the 21st century. In spite of the approval of many new disease-modifying therapies for AD, the clinical advantages of these new treatments are less certain. AIM This investigation was intended to determine the potential neuroprotective impact of morin hydrate (MH), zeolite clinoptilolite (ZC), and/or physical and mental activities (PhM) on an aluminum chloride (AlCl3)-induced AD rat model. METHODS Male Sprague Dawley rats were randomly allocated into seven groups. Group I was the control group. Groups II-VII were treated with AlCl3 for 5 weeks. Groups III-VII were tested for the effects of MH, ZC, and/or PhM. Biochemical, brain histopathological, and behavioral studies were performed. RESULTS PhM, MH, and ZC combined therapy exhibited a significant neuroprotective effect demonstrated by corrected catecholamines and tau and β-amyloid levels, as well as the antioxidant and anti-ferroptotic effects probably through Nrf2/HO-1/GPX4 and ACSL4 signaling pathways. In addition, combined therapy counteracted the inflammatory responses through modulating the TLR4/NF-κβ/NLRP3 inflammasome expression. Moreover, combined therapy groups showed the maximum improvement of both APOE4/LRP1 and Wnt3/β-catenin/GSK-3β signaling expressions. CONCLUSION This research highlights the neuroprotective impact of MH and ZC plus PhM against AlCl3-induced AD via modulation of Nrf2/HO-1/GPX4, TLR4/NF-κβ/NLRP3, APOE4/LRP1, and Wnt3/β-catenin/GSK-3β signaling pathways. It is the first to point out the inclusion of ferroptosis-Nrf2/inflammasomes cross-talk in the neuroprotection mechanism of MH/ZC against the AlCl3-mediated AD model.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Clinical Pharmacy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Yasmin Mahran
- Research Department, Natural and Health Sciences Research Center, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Qalyubia 13518, Egypt
| | - Heba S. Youssef
- Department of Physiology, Faculty of Medicine, Benha University, Qalyubia 13518, Egypt;
| | - Ahmed M. E. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Maha Alsunbul
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (M.A.); (R.A.)
| | - Reem ALQahtani
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (M.A.); (R.A.)
| | - Asmaa A. Mohammed
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al Azhar University, Cairo 11651, Egypt;
| |
Collapse
|
2
|
Landolfo E, Berretta E, Balsamo F, Petrosini L, Gelfo F. Cognition enhances cognition: A comprehensive analysis on cognitive stimulation protocols and their effects on cognitive functions in animal models. J Neurosci Methods 2025; 413:110316. [PMID: 39515651 DOI: 10.1016/j.jneumeth.2024.110316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/30/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Brain plasticity is involved in the regulation of neural differentiation as well as in functional processes related to memory consolidation, learning, and cognition during healthy life and brain pathology. Modifications in lifestyle, like poor diet, insufficient physical exercise and cognitive stimulation are associated with an increased risk of neurodegeneration; however, there is a paucity of research regarding the impact of individual factors on dementia risk or progression. Cognitive stimulation is a group of techniques and strategies, including cognitive enrichment (CE) and cognitive training (CT), aimed to maintain or improve the functionality of cognitive abilities, such as memory, learning, cognitive flexibility, and attention. The present scoping review focuses on cognitive stimulation by investigating its neuroprotective and therapeutic role on these cognitive functions in rodents. A methodical bibliographic search of experimental studies on rats and mice was conducted on PubMed and Scopus databases up to June 3, 2024. A pool of 29 original research articles was considered as relevant to the topic of the present work. Evidence shows that CE but above all CT influence cognitive performance and brain structure in rodents with specific differences with respect to the quality and quantity of stimulation. There would appear to be greater effects in restoring damage than in preserving or improving a functioning condition. These results provide a theoretical basis to be considered in the therapeutic setting, although further systematic studies would be necessary to identify and characterize the cognitive stimulation protocols which hold the greatest and task-transferable impact on cognitive functioning and maintenance.
Collapse
Affiliation(s)
| | | | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, Rome 00179, Italy; Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy
| | | | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Rome 00179, Italy; Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy.
| |
Collapse
|
3
|
Hohlbaum K, Andresen N, Mieske P, Kahnau P, Lang B, Diederich K, Palme R, Mundhenk L, Sprekeler H, Hellwich O, Thöne-Reineke C, Lewejohann L. Lockbox enrichment facilitates manipulative and cognitive activities for mice. OPEN RESEARCH EUROPE 2024; 4:108. [PMID: 39257918 PMCID: PMC11384198 DOI: 10.12688/openreseurope.17624.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/12/2024]
Abstract
Background Due to the lack of complexity and variety of stimuli, conventional housing conditions of laboratory mice do not allow these animals to fully express their behavioral repertoire, including manipulative and cognitive activities. Therefore, we designed mechanical puzzles, so-called lockboxes, for mice that can be provided in their home cages. We investigated the impact of the lockbox enrichment on their phenotype and affective state when compared to conventional housing (CH) and super-environmental enrichment (SEE). Methods Young adult female C57BL/6JCrl mice were examined before and after 2-month exposure to the different types of enrichment in a phenotyping test battery, including tests for trait and state anxiety-related behavior, calorimetric measurements, body weight measurements, the analysis of stress hormone metabolite concentrations, and sequential problem-solving abilities with a novel lockbox. At the end of the study, adrenal gland weights were determined and pathohistological evaluation was performed. For all continuous variables, the relative variability was calculated. Results While the different types of enrichment affected trait anxiety-related behavior, neither state anxiety-related behavior nor physiological variables (i.e., bodyweight, resting metabolic rate, stress hormone metabolite concentrations, adrenal gland weights) were influenced. LE improved sequential problem-solving (i.e., solving novel lockboxes) when compared to SEE. Regardless of the housing condition, the relative variability increased in most variables over time, although the coefficient of variation decreased for some variables, especially in animals with access to LE. There was no evidence of toxicopathological effects associated with the material from which the lockboxes were made. Conclusions All lockboxes are available as open-source tool. LE revealed beneficial effects on the affective state of laboratory mice and their performance in solving novel lockboxes. Neither relevant phenotype of the mice nor reproducibility of the data were compromised by LE, similar to SEE. The lockboxes may also be used as novel approach for assessing cognition in mice.
Collapse
Affiliation(s)
- Katharina Hohlbaum
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, 12277, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, 10587, Germany
| | - Niek Andresen
- Science of Intelligence, Research Cluster of Excellence, Berlin, 10587, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, School of Veterinary Medicine, Freie Universitat Berlin, Berlin, 14163, Germany
- Computer Vision and Remote Sensing, Technische Universitat Berlin, Berlin, 10587, Germany
| | - Paul Mieske
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, 12277, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, 10587, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, School of Veterinary Medicine, Freie Universitat Berlin, Berlin, 14163, Germany
| | - Pia Kahnau
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, 12277, Germany
| | - Benjamin Lang
- Science of Intelligence, Research Cluster of Excellence, Berlin, 10587, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, School of Veterinary Medicine, Freie Universitat Berlin, Berlin, 14163, Germany
| | - Kai Diederich
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, 12277, Germany
| | - Rupert Palme
- Experimental Endocrinology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, 1210, Austria
| | - Lars Mundhenk
- Institute of Veterinary Pathology, School of Veterinary Medicine, Freie Universitat Berlin, Berlin, 14163, Germany
| | - Henning Sprekeler
- Science of Intelligence, Research Cluster of Excellence, Berlin, 10587, Germany
- Modeling of Cognitive Processes, Technische Universitat Berlin, Berlin, 10587, Germany
| | - Olaf Hellwich
- Science of Intelligence, Research Cluster of Excellence, Berlin, 10587, Germany
- Computer Vision and Remote Sensing, Technische Universitat Berlin, Berlin, 10587, Germany
| | - Christa Thöne-Reineke
- Science of Intelligence, Research Cluster of Excellence, Berlin, 10587, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, School of Veterinary Medicine, Freie Universitat Berlin, Berlin, 14163, Germany
| | - Lars Lewejohann
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, 12277, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, 10587, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, School of Veterinary Medicine, Freie Universitat Berlin, Berlin, 14163, Germany
| |
Collapse
|
4
|
Sinclair D, Canty AJ, Ziebell JM, Woodhouse A, Collins JM, Perry S, Roccati E, Kuruvilla M, Leung J, Atkinson R, Vickers JC, Cook AL, King AE. Experimental laboratory models as tools for understanding modifiable dementia risk. Alzheimers Dement 2024; 20:4260-4289. [PMID: 38687209 PMCID: PMC11180874 DOI: 10.1002/alz.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024]
Abstract
Experimental laboratory research has an important role to play in dementia prevention. Mechanisms underlying modifiable risk factors for dementia are promising targets for dementia prevention but are difficult to investigate in human populations due to technological constraints and confounds. Therefore, controlled laboratory experiments in models such as transgenic rodents, invertebrates and in vitro cultured cells are increasingly used to investigate dementia risk factors and test strategies which target them to prevent dementia. This review provides an overview of experimental research into 15 established and putative modifiable dementia risk factors: less early-life education, hearing loss, depression, social isolation, life stress, hypertension, obesity, diabetes, physical inactivity, heavy alcohol use, smoking, air pollution, anesthetic exposure, traumatic brain injury, and disordered sleep. It explores how experimental models have been, and can be, used to address questions about modifiable dementia risk and prevention that cannot readily be addressed in human studies. HIGHLIGHTS: Modifiable dementia risk factors are promising targets for dementia prevention. Interrogation of mechanisms underlying dementia risk is difficult in human populations. Studies using diverse experimental models are revealing modifiable dementia risk mechanisms. We review experimental research into 15 modifiable dementia risk factors. Laboratory science can contribute uniquely to dementia prevention.
Collapse
Affiliation(s)
- Duncan Sinclair
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Alison J. Canty
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
- Global Brain Health Institute, Trinity CollegeDublinIreland
| | - Jenna M. Ziebell
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Jessica M. Collins
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Eddy Roccati
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Maneesh Kuruvilla
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Jacqueline Leung
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Rachel Atkinson
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - James C. Vickers
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
5
|
de Vries LE, Huitinga I, Kessels HW, Swaab DF, Verhaagen J. The concept of resilience to Alzheimer's Disease: current definitions and cellular and molecular mechanisms. Mol Neurodegener 2024; 19:33. [PMID: 38589893 PMCID: PMC11003087 DOI: 10.1186/s13024-024-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Some individuals are able to maintain their cognitive abilities despite the presence of significant Alzheimer's Disease (AD) neuropathological changes. This discrepancy between cognition and pathology has been labeled as resilience and has evolved into a widely debated concept. External factors such as cognitive stimulation are associated with resilience to AD, but the exact cellular and molecular underpinnings are not completely understood. In this review, we discuss the current definitions used in the field, highlight the translational approaches used to investigate resilience to AD and summarize the underlying cellular and molecular substrates of resilience that have been derived from human and animal studies, which have received more and more attention in the last few years. From these studies the picture emerges that resilient individuals are different from AD patients in terms of specific pathological species and their cellular reaction to AD pathology, which possibly helps to maintain cognition up to a certain tipping point. Studying these rare resilient individuals can be of great importance as it could pave the way to novel therapeutic avenues for AD.
Collapse
Affiliation(s)
- Luuk E de Vries
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Duggan MR, Steinberg Z, Peterson T, Francois TJ, Parikh V. Cognitive trajectories in longitudinally trained 3xTg-AD mice. Physiol Behav 2024; 275:114435. [PMID: 38103626 PMCID: PMC10872326 DOI: 10.1016/j.physbeh.2023.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Preclinical studies in Alzheimer's disease (AD) often rely on cognitively naïve animal models in cross-sectional designs that can fail to reflect the cognitive exposures across the lifespan and heterogeneous neurobehavioral features observed in humans. To determine whether longitudinal cognitive training may affect cognitive capacities in a well-characterized AD mouse model, 3xTg and wild-type mice (n = 20) were exposed daily to a training variant of the Go-No-Go (GNG) operant task from 3 to 9 months old. At 3, 6, and 9 months, performance on a testing variant of the GNG task and anxiety-like behaviors were measured, while long-term recognition memory was also assessed at 9 months. In general, GNG training improved performance with increasing age across genotypes. At 3 months old, 3xTg mice showed slight deficits in inhibitory control that were accompanied by minor improvements in signal detection and decreased anxiety-like behavior, but these differences did not persist at 6 and 9 months old. At 9 months old, 3xTg mice displayed minor deficits in signal detection, and long-term recognition memory capacity was comparable with wild-type subjects. Our findings indicate that longitudinal cognitive training can render 3xTg mice with cognitive capacities that are on par with their wild-type counterparts, potentially reflecting functional compensation in subjects harboring AD genetic mutations.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Zoe Steinberg
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Tara Peterson
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Tara-Jade Francois
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
7
|
She L, Sun J, Xiong L, Li A, Li L, Wu H, Ren J, Wang W, Liang G, Zhao X. Ginsenoside RK1 improves cognitive impairments and pathological changes in Alzheimer's disease via stimulation of the AMPK/Nrf2 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155168. [PMID: 37925892 DOI: 10.1016/j.phymed.2023.155168] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/30/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The pathogenesis of Alzheimer's disease (AD) is complex, resulting in unsatisfactory effects of single-target therapeutic drugs. Accumulation evidence suggests that low toxicity multi-target drugs may play effective roles in AD. Ginseng is the root and rhizome of Panax ginseng Meyer, which can be used not only as herbal medicine but also as a functional food to support body functions. Ginsenoside RK1 (RK1), obtained from ginseng plants through high-temperature treatment, has antiapoptotic, antioxidant, anti-inflammatory effects and these events are involved in the development of AD. So, we believe that RK1 may be an effective drug for the treatment of AD. HYPOTHESIS/PURPOSE We aimed to investigate the potential protective effects and mechanisms of RK1 in AD. METHODS Neuronal damage was detected by MTT assay, LDH assay, immunofluorescence and western blotting. Oxidative stress was measured by JC-1 staining, reactive oxygen species (ROS) staining, superoxide dismutase (SOD) and malonaldehyde (MDA). The cognitive deficit was measured through morris water maze (MWM) and novel object recognition (NOR) tests. RESULTS RK1 attenuated Aβ-induced apoptosis, restored mitochondrial membrane potential (ΔΨm), and reduced intracellular levels of ROS in both PC12 cells and primary cultured neurons. In vivo, RK1 significantly improved cognitive deficits and mitigated AD-like pathological features. Notably, RK1 demonstrated superior efficacy compared to the positive control drug, donepezil. Mechanistically, our study elucidates that RK1 modulates the phosphorylation of AMP-activated protein kinase (AMPK) and its downstream target, NF-E2-related factor 2 (Nrf2), leading to the optimization of mitochondrial membrane potential, reduction of ROS levels, and mitigation of AD-like pathology. It's noteworthy that blocking the AMPK signaling pathway attenuated the protective effects of RK1. CONCLUSION RK1 demonstrates superior efficacy in alleviating cognitive deficits and mitigating pathological changes compared to donepezil. These findings suggest the potential utility of RK1-based therapies in the development of treatments for AD.
Collapse
Affiliation(s)
- Lingyu She
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Jinfeng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Li Xiong
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ankang Li
- Affiliated Yongkang First People's Hospital, Hangzhou Medical College, Yongkang, Zhejiang 321399, China
| | - Liwei Li
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Haibin Wu
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Juan Ren
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Wei Wang
- Affiliated Yongkang First People's Hospital, Hangzhou Medical College, Yongkang, Zhejiang 321399, China
| | - Guang Liang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Xia Zhao
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
8
|
Mehla J, Deibel SH, Karem H, Hong NS, Hossain SR, Lacoursiere SG, Sutherland RJ, Mohajerani MH, McDonald RJ. Repeated multi-domain cognitive training prevents cognitive decline, anxiety and amyloid pathology found in a mouse model of Alzheimer disease. Commun Biol 2023; 6:1145. [PMID: 37950055 PMCID: PMC10638434 DOI: 10.1038/s42003-023-05506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Education, occupation, and an active lifestyle, comprising enhanced social, physical, and mental components are associated with improved cognitive functions in aged people and may delay the progression of various neurodegenerative diseases including Alzheimer's disease. To investigate this protective effect, 3-month-old APPNL-G-F/NL-G-F mice were exposed to repeated single- or multi-domain cognitive training. Cognitive training was given at the age of 3, 6, & 9 months. Single-domain cognitive training was limited to a spatial navigation task. Multi-domain cognitive training consisted of a spatial navigation task, object recognition, and fear conditioning. At the age of 12 months, behavioral tests were completed for all groups. Then, mice were sacrificed, and their brains were assessed for pathology. APPNL-G-F/NL-G-F mice given multi-domain cognitive training compared to APPNL-G-F/NL-G-F control group showed an improvement in cognitive functions, reductions in amyloid load and microgliosis, and a preservation of cholinergic function. Additionally, multi-domain cognitive training improved anxiety in APPNL-G-F/NL-G-F mice as evidenced by measuring thigmotaxis behavior in the Morris water maze. There were mild reductions in microgliosis in the brain of APPNL-G-F/NL-G-F mice with single-domain cognitive training. These findings provide causal evidence for the potential of certain forms of cognitive training to mitigate the cognitive deficits in Alzheimer disease.
Collapse
Affiliation(s)
- Jogender Mehla
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Department of Psychology, University of New Brunswick, POB 4400, Fredericton, NB, E3B 3A1, Canada
| | - Hadil Karem
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Nancy S Hong
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Shakhawat R Hossain
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Sean G Lacoursiere
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J Sutherland
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
9
|
Zhao J, Zhang Z, Lai KC, Lai L. Administration of recombinant FOXN1 protein attenuates Alzheimer's pathology in mice. Brain Behav Immun 2023; 113:341-352. [PMID: 37541395 PMCID: PMC10528256 DOI: 10.1016/j.bbi.2023.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in older adults and characterized by progressive loss of memory and cognitive functions that are associated with amyloid-beta (Aβ) plaques and neurofibrillary tangles. Immune cells play an important role in the clearance of Aβ deposits and neurofibrillary tangles. T cells are the major component of the immune system. The thymus is the primary organ for T cell generation. T cell development in the thymus depends on thymic epithelial cells (TECs). However, TECs undergo both qualitative and quantitative loss over time. We have previously reported that a recombinant (r) protein containing FOXN1 and a protein transduction domain can increase the number of TECs and subsequently increases the number of T cells in mice. In this study we determined the ability of rFOXN1 to affect cognitive performance and AD pathology in mice. METHODS Aged 3xTg-AD and APP/PS1 AD mice were injected with rFOXN1 or control protein. Cognitive performance, AD pathology, the thymic microenvironment and immune cells were then analyzed. RESULTS Administration of rFOXN1 into AD mice improves cognitive performance and reduces Aβ plaque load and phosphorylated tau in the brain. This is related to rejuvenating the aged thymic microenvironment, which results in enhanced T cell generation in the thymus, leading to increased number of T cells, especially IFNγ-producing T cells, in the spleen and the choroid plexus (CP), enhanced expression of immune cell trafficking molecules in the CP, and increased migration of monocyte-derived macrophages into the brain. Furthermore, the production of anti-Aβ antibodies in the serum and the brain, and the macrophage phagocytosis of Aβ are enhanced in rFOXN1-treated AD mice. CONCLUSIONS Our results suggest that rFOXN1 protein has the potential to provide a novel approach to treat AD patients.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Zhenzhen Zhang
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Kuan Chen Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA; University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
10
|
Torraville SE, Flynn CM, Kendall TL, Yuan Q. Life Experience Matters: Enrichment and Stress Can Influence the Likelihood of Developing Alzheimer's Disease via Gut Microbiome. Biomedicines 2023; 11:1884. [PMID: 37509523 PMCID: PMC10377385 DOI: 10.3390/biomedicines11071884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, characterized by the presence of β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) formed from abnormally phosphorylated tau proteins (ptau). To date, there is no cure for AD. Earlier therapeutic efforts have focused on the clinical stages of AD. Despite paramount efforts and costs, pharmaceutical interventions including antibody therapies targeting Aβ have largely failed. This highlights the need to alternate treatment strategies and a shift of focus to early pre-clinical stages. Approximately 25-40% of AD cases can be attributed to environmental factors including chronic stress. Gut dysbiosis has been associated with stress and the pathogenesis of AD and can increase both Aβ and NFTs in animal models of the disease. Both stress and enrichment have been shown to alter AD progression and gut health. Targeting stress-induced gut dysbiosis through probiotic supplementation could provide a promising intervention to delay disease progression. In this review, we discuss the effects of stress, enrichment, and gut dysbiosis in AD models and the promising evidence from probiotic intervention studies.
Collapse
Affiliation(s)
- Sarah E Torraville
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Cassandra M Flynn
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Tori L Kendall
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
11
|
Kilian JG, Mejias-Ortega M, Hsu HW, Herman DA, Vidal J, Arechavala RJ, Renusch S, Dalal H, Hasen I, Ting A, Rodriguez-Ortiz CJ, Lim SL, Lin X, Vu J, Saito T, Saido TC, Kleinman MT, Kitazawa M. Exposure to quasi-ultrafine particulate matter accelerates memory impairment and Alzheimer's disease-like neuropathology in the AppNL-G-F knock-in mouse model. Toxicol Sci 2023; 193:175-191. [PMID: 37074955 PMCID: PMC10230292 DOI: 10.1093/toxsci/kfad036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Exposure to traffic-related air pollution consisting of particulate matter (PM) is associated with cognitive decline leading to Alzheimer's disease (AD). In this study, we sought to examine the neurotoxic effects of exposure to ultrafine PM and how it exacerbates neuronal loss and AD-like neuropathology in wildtype (WT) mice and a knock-in mouse model of AD (AppNL-G-F/+-KI) when the exposure occurs at a prepathologic stage or at a later age with the presence of neuropathology. AppNL-G-F/+-KI and WT mice were exposed to concentrated ultrafine PM from local ambient air in Irvine, California, for 12 weeks, starting at 3 or 9 months of age. Particulate matter-exposed animals received concentrated ultrafine PM up to 8 times above the ambient levels, whereas control animals were exposed to purified air. Particulate matter exposure resulted in a marked impairment of memory tasks in prepathologic AppNL-G-F/+-KI mice without measurable changes in amyloid-β pathology, synaptic degeneration, and neuroinflammation. At aged, both WT and AppNL-G-F/+-KI mice exposed to PM showed a significant memory impairment along with neuronal loss. In AppNL-G-F/+-KI mice, we also detected an increased amyloid-β buildup and potentially harmful glial activation including ferritin-positive microglia and C3-positive astrocytes. Such glial activation could promote the cascade of degenerative consequences in the brain. Our results suggest that exposure to PM impairs cognitive function at both ages while exacerbation of AD-related pathology and neuronal loss may depend on the stage of pathology, aging, and/or state of glial activation. Further studies will be required to unveil the neurotoxic role of glial activation activated by PM exposure.
Collapse
Affiliation(s)
- Jason G Kilian
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - Marina Mejias-Ortega
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Department of Cell Biology, Genetics and Physiology, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga-IBIMA, Universidad de Malaga, Malaga, Spain
- Centro de Investigación Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Heng-Wei Hsu
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - David A Herman
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Janielle Vidal
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - Rebecca J Arechavala
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Samantha Renusch
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Hansal Dalal
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Irene Hasen
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Amanda Ting
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Carlos J Rodriguez-Ortiz
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - Siok-Lam Lim
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - Xiaomeng Lin
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Joan Vu
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Masashi Kitazawa
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| |
Collapse
|
12
|
Lonnemann N, Korte M, Hosseini S. Repeated performance of spatial memory tasks ameliorates cognitive decline in APP/PS1 mice. Behav Brain Res 2023; 438:114218. [PMID: 36403672 DOI: 10.1016/j.bbr.2022.114218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a burden on the public health system because it is a neurodegenerative disease that is incurable and for which there is no successful treatment. AD patients suffer from symptoms for many years, with progressive loss of cognitive and functional abilities. In addition to the features of AD, described as amyloid plaques and neurofibrillary tangles, neuroinflammatory processes, genetic factors, and lifestyle also play important roles. Increasing evidence for lifestyle factors includes possible changes due to smoking, social engagement, and physical activity. METHODS Morris water maze behavioral tasks were performed to analyze the formation of spatial memory. APPswe/PS1dE9 mice with a remarkable increase in amyloid-β production associated with certain behavioral abnormalities comparable to AD symptoms and age-matched wild-type littermates were trained several times at 3, 6, 9, and 12 months of age and compared with untrained groups at 9 and 12 months of age. Performance during the acquisition phase, in the reference memory test, and in searching strategies were analyzed. RESULTS 9- and 12-month-old APP/PS1 mice showed cognitive impairment, especially in the reference memory test and searching strategies. This cognitive deterioration was reversed in 9- and 12-month-old APP/PS1 mice that had been previously trained several times. Even in the reversal test, in which memory formation must be adapted to the new platform position, several trained APP/PS1 mice performed better. CONCLUSION Repeated spatial memory training in the water maze showed positive effects on memory formation in APP/PS1 mice. Interestingly, the cohort that had been previously trained several times was able to use increased hippocampus-dependent strategies, similar to the WT mice. This may suggest that cognitively demanding and physically active tasks can improve cognitive function.
Collapse
Affiliation(s)
- Niklas Lonnemann
- Department of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany; Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, 38124 Braunschweig, Germany
| | - Shirin Hosseini
- Department of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany; Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, 38124 Braunschweig, Germany.
| |
Collapse
|
13
|
Spatial Memory Training Counteracts Hippocampal GIRK Channel Decrease in the Transgenic APPSw,Ind J9 Alzheimer’s Disease Mouse Model. Int J Mol Sci 2022; 23:ijms232113444. [PMID: 36362230 PMCID: PMC9659077 DOI: 10.3390/ijms232113444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
G-protein-gated inwardly rectifying potassium (GIRK) channels are critical determinants of neuronal excitability. They have been proposed as potential targets to restore excitatory/inhibitory balance in acute amyloidosis models, where hyperexcitability is a hallmark. However, the role of GIRK signaling in transgenic mice models of Alzheimer’s disease (AD) is largely unknown. Here, we study whether progressive amyloid-β (Aβ) accumulation in the hippocampus during aging alters GIRK channel expression in mutant β-amyloid precursor protein (APPSw,Ind J9) transgenic AD mice. Additionally, we examine the impact of spatial memory training in a hippocampal-dependent task, on protein expression of GIRK subunits and Regulator of G-protein signaling 7 (RGS7) in the hippocampus of APPSw,Ind J9 mice. Firstly, we found a reduction in GIRK2 expression (the main neuronal GIRK channels subunit) in the hippocampus of 6-month-old APPSw,Ind J9 mice. Moreover, we found an aging effect on GIRK2 and GIRK3 subunits in both wild type (WT) and APPSw,Ind J9 mice. Finally, when 6-month-old animals were challenged to a spatial memory training, GIRK2 expression in the APPSw,Ind J9 mice were normalized to WT levels. Together, our results support the evidence that GIRK2 could account for the excitatory/inhibitory neurotransmission imbalance found in AD models, and training in a cognitive hippocampal dependent task may have therapeutic benefits of reversing this effect and lessen early AD deficits.
Collapse
|
14
|
Emre-Aydingoz S, Lux KM, Efe OE, Topcu DI, Erdem SR. Effect of rosuvastatin on spatial learning, memory, and anxiety-like behaviour in ovariectomized rats. J OBSTET GYNAECOL 2022; 42:3268-3276. [PMID: 35993621 DOI: 10.1080/01443615.2022.2112024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effect of rosuvastatin (Ros) on cognitive function and anxiety-like behaviour in ovariectomized rats were evaluated. Eighteen female Wistar rats (218-310 g, 6-8 months old) were allocated into sham (n = 6), ovariectomy (Ovx, n = 6) or Ovx + Ros (up to eighth week n = 6, then n = 4) groups. Ros was administered at 20 mg/kg/day by oral gavage for 12 weeks. Behavioural tests were performed at 4, 8 and 12 weeks following Ovx. At 12 weeks, Ovx group had significantly longer escape latency than the sham group at the first day of the four-day training period of the Morris Water Maze test (p < .01). In the Elevated Plus Maze test, Ovx group spent significantly more time in the closed arms than the sham group (p < .01), and this anxiety-like behavioural effect of Ovx was prevented by 12-weeks Ros treatment (p < .05). In conclusion, Ros prevents memory deficit and anxiety-like behaviour in the ovariectomized rats, a model for human surgical menopause. Impact StatementWhat is already known on this subject? Reduced levels of oestrogen in surgical postmenopausal period has been linked to an increased risk of cognitive dysfunction. Although statins have been shown to improve cognitive function in experimental and clinical studies, there are limited studies evaluating the effect of statins on the cognitive decline and anxiety-like behaviour associated with surgical menopause.What do the results of this study add? Rosuvastatin, a long-acting statin, prevents learning and memory deficit and anxiety-like behaviour in the ovariectomized rat model.What are the implications of these findings for future clinical practice and/or future clinical research? These findings will form the basis for further experimental and clinical research on the effects of statins on cognitive functions and anxiety-like behaviour in the surgical menopause.
Collapse
Affiliation(s)
- Selda Emre-Aydingoz
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Karl Michael Lux
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Oguzhan Ekin Efe
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Deniz Ilhan Topcu
- Department of Biochemistry, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Saban Remzi Erdem
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
15
|
Mehla J, Deibel SH, Karem H, Hossain S, Lacoursiere SG, Sutherland RJ, Mohajerani MH, McDonald RJ. Dramatic impacts on brain pathology, anxiety, and cognitive function in the knock-in APPNL-G-F mouse model of Alzheimer disease following long-term voluntary exercise. Alzheimers Res Ther 2022; 14:143. [PMID: 36180883 PMCID: PMC9526288 DOI: 10.1186/s13195-022-01085-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Background An active lifestyle is associated with improved cognitive functions in aged people and may prevent or slow down the progression of various neurodegenerative diseases including Alzheimer’s disease (AD). To investigate these protective effects, male APPNL-G-F mice were exposed to long-term voluntary exercise. Methods Three-month-old AD mice were housed in a cage supplemented with a running wheel for 9 months for long-term exercise. At the age of 12 months, behavioral tests were completed for all groups. After completing behavioral testing, their brains were assessed for amyloid pathology, microgliosis, and cholinergic cells. Results The results showed that APPNL-G-F mice allowed to voluntarily exercise showed an improvement in cognitive functions. Furthermore, long-term exercise also improved anxiety in APPNL-G-F mice as assessed by measuring thigmotaxis in the Morris water task. We also found reductions in amyloid load and microgliosis, and a preservation of cholinergic cells in the brain of APPNL-G-F mice allowed to exercise in their home cages. These profound reductions in brain pathology associated with AD are likely responsible for the observed improvement of learning and memory functions following extensive and regular exercise. Conclusion These findings suggest the potential of physical exercise to mitigate the cognitive deficits in AD.
Collapse
|
16
|
Komleva YK, Lopatina OL, Gorina YV, Chernykh AI, Trufanova LV, Vais EF, Kharitonova EV, Zhukov EL, Vahtina LY, Medvedeva NN, Salmina AB. Expression of NLRP3 Inflammasomes in Neurogenic Niche Contributes to the Effect of Spatial Learning in Physiological Conditions but Not in Alzheimer's Type Neurodegeneration. Cell Mol Neurobiol 2022; 42:1355-1371. [PMID: 33392919 PMCID: PMC11421703 DOI: 10.1007/s10571-020-01021-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022]
Abstract
A common feature of neurodegenerative disorders, in particular Alzheimer's disease (AD), is a chronic neuroinflammation associated with aberrant neuroplasticity. Development of neuroinflammation affects efficacy of stem and progenitor cells proliferation, differentiation, migration, and integration of newborn cells into neural circuitry. However, precise mechanisms of neurogenesis alterations in neuroinflammation are not clear yet. It is well established that expression of NLRP3 inflammasomes in glial cells marks neuroinflammatory events, but less is known about contribution of NLRP3 to deregulation of neurogenesis within neurogenic niches and whether neural stem cells (NSCs), neural progenitor cells (NPCs) or immature neuroblasts may express inflammasomes in (patho)physiological conditions. Thus, we studied alterations of neurogenesis in rats with the AD model (intra-hippocampal injection of Aβ1-42). We found that in Aβ-affected brain, number of CD133+ cells was elevated after spatial training in the Morris water maze. The number of PSA-NCAM+ neuroblasts diminished by Aβ injection was completely restored by subsequent spatial learning. Spatial training leads to elevated expression of NLRP3 inflammasomes in the SGZ (subgranular zones): CD133+ and PSA-NCAM+ cells started to express NLRP3 in sham-operated, but not AD rats. Taken together, our data suggest that expression of NLRP3 inflammasomes in CD133+ and PSA-NCAM+ cells may contribute to stimulation of adult neurogenesis in physiological conditions, whereas Alzheimer's type neurodegeneration abolishes stimuli-induced overexpression of NLRP3 within the SGZ neurogenic niche.
Collapse
Affiliation(s)
- Yulia K Komleva
- The Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia.
- Research Institute of Molecular Medicine and Pathobiochemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia.
| | - O L Lopatina
- The Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Ya V Gorina
- The Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - A I Chernykh
- Research Institute of Molecular Medicine and Pathobiochemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - L V Trufanova
- The Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - E F Vais
- The Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - E V Kharitonova
- The Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - E L Zhukov
- Department of Pathological Anatomy Named After Prof. P.G. Podzolkov, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - L Yu Vahtina
- Department of Human Anatomy, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - N N Medvedeva
- Department of Human Anatomy, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - A B Salmina
- The Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| |
Collapse
|
17
|
Gonzalez-Moreno J, Satorres E, Soria-Urios G, Meléndez JC. Cognitive Stimulation in Moderate Alzheimer's Disease. J Appl Gerontol 2022; 41:1934-1941. [PMID: 35621327 DOI: 10.1177/07334648221089283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cognitive stimulation is one of the non-pharmacological therapies recommended for dementia intervention. The present study evaluated the efficacy of an intervention based on cognitive stimulation in people with moderate Alzheimer's disease. Fifty-nine subjects with moderate dementia were randomly assigned to the stimulation group (N = 36) and the control group (N = 35). The treatment group received 16 intervention sessions cognitive tasks. All participants were evaluated with a battery of neuropsychological tests at three time points (pre, post, and follow-up). The treatment group showed significant increases in the three domains studied (memory, attention, and executive functions), although some of these effects were not maintained at follow-up. The control group progressively worsened. Cognitive stimulation was found to be an effective intervention for people with moderate Alzheimer's disease because it helped to maintain memory function, executive functions, and attention. However, the effects were minimized at the 3-month follow-up.
Collapse
Affiliation(s)
| | - Encarnacion Satorres
- Department of Developmental Psychology, Faculty of Psychology, University of Valencia, Valencia, Spain
| | - Gema Soria-Urios
- Faculty Health Sciences, Universidad Internacional de Valencia, Valencia, Spain.,Department of Developmental Psychology, Faculty of Psychology, University of Valencia, Valencia, Spain
| | - Juan C Meléndez
- Department of Developmental Psychology, Faculty of Psychology, University of Valencia, Valencia, Spain
| |
Collapse
|
18
|
Stieger B, Palme R, Kaiser S, Sachser N, Helene Richter S. When left is right: The effects of paw preference training on behaviour in mice. Behav Brain Res 2022; 430:113929. [PMID: 35595059 DOI: 10.1016/j.bbr.2022.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
Spontaneous limb preferences exist in numerous species. To investigate the underlying mechanisms of these preferences, different methods, such as training, have been developed to shift preferences artificially. However, studies that systematically examine the effects of shifting preferences on behaviour and physiology are largely missing. Therefore, the aim of this study was to assess the impact of shifting paw preferences via training on spontaneous home cage behaviour, as well as anxiety-like behaviour and exploratory locomotion (Elevated plus maze test, Dark light test, Open field test, Free exploration test), learning performance (Labyrinth-maze) and stress hormones (fecal corticosterone metabolites) in laboratory mice (Mus musculus f. domestica). For this, we assessed spontaneous paw preferences of C57BL/6J females (Nambilateral = 23, Nleft = 23, Nright = 25). Subsequently, half of the individuals from each category were trained once a week for four weeks in a food-reaching task to use either their left or right paw, respectively, resulting in six groups: AL, AR, LL, LR, RL, RR. After training, a battery of behavioural tests was performed and spontaneous preferences were assessed again. Our results indicate that most mice were successfully trained and the effect of training was present days after training. However, a significant difference of preferences between RL and LL mice during training suggests a rather low training success of RL mice. Additionally, preferences of L mice differed from those of A and R mice after training, indicating differential long-term effects of training in these groups. Furthermore, left paw training led to higher levels of self-grooming, possibly as a displacement behaviour, and more time spent in the light compartment of the Dark light test. However, overall, there was no systematic influence of training on behavioural measures and stress hormones. Different explanations for this lack of influence, such as the link between training and hemispheric functioning or the intensity and ecological relevance of the training, are discussed.
Collapse
Affiliation(s)
- Binia Stieger
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; DFG Research Training Group EvoPAD, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany.
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria.
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; DFG Research Training Group EvoPAD, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany.
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; DFG Research Training Group EvoPAD, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany.
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; DFG Research Training Group EvoPAD, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany.
| |
Collapse
|
19
|
Gupta S, Moreno AJ, Wang D, Leon J, Chen C, Hahn O, Poon Y, Greenberg K, David N, Wyss-Coray T, Raftery D, Promislow DEL, Dubal DB. KL1 Domain of Longevity Factor Klotho Mimics the Metabolome of Cognitive Stimulation and Enhances Cognition in Young and Aging Mice. J Neurosci 2022; 42:4016-4025. [PMID: 35428698 PMCID: PMC9097772 DOI: 10.1523/jneurosci.2458-21.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Cognitive deficits are a major biomedical challenge-and engagement of the brain in stimulating tasks improves cognition in aged individuals (Wilson et al., 2002; Gates et al., 2011) and rodents (Aidil-Carvalho et al., 2017), through unknown mechanisms. Whether cognitive stimulation alters specific metabolic pathways in the brain is unknown. Understanding which metabolic processes are involved in cognitive stimulation is important because it could lead to pharmacologic intervention that promotes biological effects of a beneficial behavior, toward the goal of effective medical treatments for cognitive deficits. Here we show using male mice that cognitive stimulation induced metabolic remodeling of the mouse hippocampus, and that pharmacologic treatment with the longevity hormone α-klotho (KL), mediated by its KL1 domain, partially mimicked this alteration. The shared, metabolic signature shared between cognitive stimulation and treatment with KL or KL1 closely correlated with individual mouse cognitive performance, indicating a link between metabolite levels and learning and memory. Importantly, the treatment of mice with KL1, an endogenous circulating factor that more closely mimicked cognitive stimulation than KL, acutely increased synaptic plasticity, a substrate of cognition. KL1 also improved cognition, itself, in young mice and countered deficits in old mice. Our data show that treatments or interventions mimicking the hippocampal metabolome of cognitive stimulation can enhance brain functions. Further, we identify the specific domain by which klotho promotes brain functions, through KL1, a metabolic mimic of cognitive stimulation.SIGNIFICANCE STATEMENT Cognitive deficits are a major biomedical challenge without truly effective pharmacologic treatments. Engaging the brain through cognitive tasks benefits cognition. Mimicking the effects of such beneficial behaviors through pharmacological treatment represents a highly valuable medical approach to treating cognitive deficits. We demonstrate that brain engagement through cognitive stimulation induces metabolic remodeling of the hippocampus that was acutely recapitulated by the longevity factor klotho, mediated by its KL1 domain. Treatment with KL1, a close mimic of cognitive stimulation, enhanced cognition and countered cognitive aging. Our findings shed light on how cognition metabolically alters the brain and provide a plausible therapeutic intervention for mimicking these alterations that, in turn, improves cognition in the young and aging brain.
Collapse
Affiliation(s)
- Shweta Gupta
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143-1207
| | - Arturo J Moreno
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143-1207
| | - Dan Wang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143-1207
| | - Julio Leon
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143-1207
| | - Chen Chen
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143-1207
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305-5101
| | - Yan Poon
- Unity Biotechnology, Inc, South San Francisco 94080
| | | | | | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305-5101
- Veterans Administration Palo Alto Healthcare System, Palo Alto, California 94304-1207
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305-5235
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California 94305-5235
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, Washington 98109-4714
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024
| | - Daniel E L Promislow
- Department of Lab Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington 98195-7470
- Department of Biology, University of Washington, Seattle, Washington 98195-1800
| | - Dena B Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143-1207
| |
Collapse
|
20
|
Tripathi MK, Kartawy M, Ginzburg S, Amal H. Arsenic alters nitric oxide signaling similar to autism spectrum disorder and Alzheimer's disease-associated mutations. Transl Psychiatry 2022; 12:127. [PMID: 35351881 PMCID: PMC8964747 DOI: 10.1038/s41398-022-01890-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 01/20/2023] Open
Abstract
Epidemiological studies have proven that exposure to Arsenic (AS) leads to the development of many neurological disorders. However, few studies have investigated its molecular mechanisms in the brain. Our previous work has revealed nitric oxide (NO)-mediated apoptosis and SNO reprogramming in the cortex following arsenic treatment, yet the role of NO and S-nitrosylation (SNO) in AS-mediated neurotoxicity has not been investigated. Therefore, we have conducted a multidisciplinary in-vivo study in mice with two different doses of Sodium Arsenite (SA) (0.1 ppm and 1 ppm) in drinking water. We used the novel SNOTRAP-based mass spectrometry method followed by the bioinformatics analysis, Western blot validation, and five different behavioral tests. Bioinformatics analysis of SA-treated mice showed significant SNO-enrichment of processes involved in mitochondrial respiratory function, endogenous antioxidant systems, transcriptional regulation, cytoskeleton maintenance, and regulation of apoptosis. Western blotting showed increased levels of cleaved PARP-1 and cleaved caspase-3 in SA-treated mice consistent with SA-induced apoptosis. Behavioral studies showed significant cognitive dysfunctions similar to those of Autism spectrum disorder (ASD) and Alzheimer's disease (AD). A comparative analysis of the SNO-proteome of SA-treated mice with two transgenic mouse strains, models of ASD and AD, showed molecular convergence of SA environmental neurotoxicity and the genetic mutations causing ASD and AD. This is the first study to show the effects of AS on SNO-signaling in the striatum and hippocampus and its effects on behavioral characteristics. Finally, further investigation of the NO-dependent mechanisms of AS-mediated neurotoxicity may reveal new drug targets for its prevention.
Collapse
Affiliation(s)
- Manish Kumar Tripathi
- grid.9619.70000 0004 1937 0538Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maryam Kartawy
- grid.9619.70000 0004 1937 0538Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shelly Ginzburg
- grid.9619.70000 0004 1937 0538Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
21
|
Shepherd A, Zhang T, Hoffmann LB, Zeleznikow-Johnston AM, Churilov L, Hannan AJ, Burrows EL. A Preclinical Model of Computerized Cognitive Training: Touchscreen Cognitive Testing Enhances Cognition and Hippocampal Cellular Plasticity in Wildtype and Alzheimer's Disease Mice. Front Behav Neurosci 2021; 15:766745. [PMID: 34938165 PMCID: PMC8685297 DOI: 10.3389/fnbeh.2021.766745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022] Open
Abstract
With the growing popularity of touchscreen cognitive testing in rodents, it is imperative to understand the fundamental effects exposure to this paradigm can have on the animals involved. In this study, we set out to assess hippocampal-dependant learning in the APP/PS1 mouse model of Alzheimer’s disease (AD) on two highly translatable touchscreen tasks – the Paired Associate Learning (PAL) task and the Trial Unique Non-Matching to Location (TUNL) task. Both of these tests are based on human tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB) and are sensitive to deficits in both mild cognitive impairment (MCI) and AD. Mice were assessed for deficits in PAL at 9–12 months of age, then on TUNL at 8–11 and 13–16 months. No cognitive deficits were evident in APP/PS1 mice at any age, contrary to previous reports using maze-based learning and memory tasks. We hypothesized that daily and long-term touchscreen training may have inadvertently acted as a cognitive enhancer. When touchscreen-tested mice were assessed on the Morris water maze, they showed improved task acquisition compared to naïve APP/PS1 mice and wild-type (WT) littermate controls. In addition, we show that touchscreen-trained WT and APP/PS1 mice show increased cell proliferation and immature neuron numbers in the dentate gyrus compared to behaviorally naïve WT and APP/PS1 mice. This result indicates that the touchscreen testing paradigm could improve cognitive performance, and/or mask an impairment, in experimental mouse models. This touchscreen-induced cognitive enhancement may involve increased neurogenesis, and possibly other forms of cellular plasticity. This is the first study to show increased numbers of proliferating cells and immature neurons in the hippocampus following touchscreen testing, and that touchscreen training can improve cognitive performance in maze-based spatial navigation tasks. This potential for touchscreen testing to induce cognitive enhancement, or other phenotypic shifts, in preclinical models should be considered in study design. Furthermore, touchscreen-mediated cognitive enhancement could have therapeutic implications for cognitive disorders.
Collapse
Affiliation(s)
- Amy Shepherd
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Tracy Zhang
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Lucas B Hoffmann
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Ariel M Zeleznikow-Johnston
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Leonid Churilov
- Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
22
|
Liu H, Zhao J, Lin Y, Su M, Lai L. Administration of anti-ERMAP antibody ameliorates Alzheimer's disease in mice. J Neuroinflammation 2021; 18:268. [PMID: 34774090 PMCID: PMC8590358 DOI: 10.1186/s12974-021-02320-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a devastating age-related neurodegenerative disorder and characterized by progressive loss of memory and cognitive functions, which are associated with amyloid-beta (Aβ) plaques. Immune cells play an important role in the clearance of Aβ deposits. Immune responses are regulated by immune regulators in which the B7 family members play a crucial role. We have recently identified erythroid membrane-associated protein (ERMAP) as a novel B7 family-related immune regulator and shown that ERMAP protein affects T cell and macrophage functions. METHODS We produced a monoclonal antibody (mAb) against ERMAP protein and then determined the ability of the mAb to affect cognitive performance and AD pathology in mice. RESULTS We have shown that the anti-ERMAP mAb neutralizes the T cell inhibitory activity of ERMAP and enhances macrophages to phagocytose Aβ in vitro. Administration of the mAb into AD mice improves cognitive performance and reduces Aβ plaque load in the brain. This is related to increased proportion of T cells, especially IFNγ-producing T cells, in the spleen and the choroid plexus (CP), enhanced expression of immune cell trafficking molecules in the CP, and increased migration of monocyte-derived macrophages into the brain. Furthermore, the production of anti-Aβ antibodies in the serum and the macrophage phagocytosis of Aβ are enhanced in the anti-ERMAP mAb-treated AD mice. CONCLUSIONS Our results suggest that manipulating the ERMAP pathway has the potential to provide a novel approach to treat AD patients.
Collapse
Affiliation(s)
- Haiyan Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA
| | - Jin Zhao
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA
| | - Yujun Lin
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA
| | - Min Su
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA
- Department of Human Histology and Embryology, Tissue Engineering and Stem Cell Research Center, Guizhou Medical University, Guiyang, 550004, China
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA.
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
23
|
Cognitive Impairment in the 3xTg-AD Mouse Model of Alzheimer's Disease is Affected by Aβ-ImmunoTherapy and Cognitive Stimulation. Pharmaceutics 2020; 12:pharmaceutics12100944. [PMID: 33023109 PMCID: PMC7601886 DOI: 10.3390/pharmaceutics12100944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical symptoms of Alzheimer’s Disease (AD) include behavioral alterations and cognitive impairment. These functional phenotypes early occur in triple-transgenic (3xTg-AD) mice. Specifically, behavioral alterations are first detected when mice are at around 2.5 months old and cognitive impairment in between 3- and 5-month-old mice. In this work, the effect of chronic Aβ-immunotherapy on behavioral and cognitive abilities was tested by monthly administering the antibody fragment scFv-h3D6 to 3xTg-AD female mice from 5 to 9 months of age. An untreated group was used as a reference, as well as to attain some information on the effect of training during the longitudinal study. Behavioral and psychological symptoms of dementia (BPSD)-like symptoms were already evident in 5-month-old mice, in the form of neophobia and anxious-like behavior. The exploratory activity decreased over the longitudinal study, not only for 3xTgAD mice but also for the corresponding non-transgenic mice (NTg). Learning abilities of 3xTg-AD mice were not seriously compromised but an impairment in long-term spatial memory was evident at 5 months of age. Interestingly, scFv-h3D6-treatment affected the cognitive impairment displayed by 5-month-old 3xTg-AD mice. It is worth noting that training also reduced cognitive impairment of 3xTg-AD mice over the longitudinal study, suggesting that to properly quantify the isolated therapeutic potential of any drug on cognition using this model it is convenient to perform a prompt, age-matched study rather than a longitudinal study. In addition, a combination of both training and Aβ-immunotherapy could constitute a possible approach to treat Alzheimer’s disease.
Collapse
|
24
|
Zhao J, Su M, Lin Y, Liu H, He Z, Lai L. Administration of Amyloid Precursor Protein Gene Deleted Mouse ESC-Derived Thymic Epithelial Progenitors Attenuates Alzheimer's Pathology. Front Immunol 2020; 11:1781. [PMID: 32849642 PMCID: PMC7431620 DOI: 10.3389/fimmu.2020.01781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/03/2020] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder and the most common cause of dementia in older adults. Although amyloid-beta (Aβ) plaque deposition and chronic neuroinflammation in the central nervous system (CNS) contribute to AD pathology, neither Aβ plaque removal nor anti-inflammatory therapy has shown much clinical success, suggesting that the combinational therapies for the disease-causative factors may be needed for amelioration. Recent data also suggest that systemic immunity in AD should be boosted, rather than suppressed, to drive an immune-dependent cascade needed for Aβ clearance and brain repair. Thymic epithelial cells (TECs) not only play a critical role in supporting T cell development but also mediate the deletion of autoreactive T cells by expressing autoantigens. We have reported that embryonic stem cells (ESCs) can be selectively induced to differentiate into thymic epithelial progenitors (TEPs) in vitro that further develop into TECs in vivo to support T cell development. We show here that transplantation of mouse ESC (mESC)-TEPs into AD mice reduced cerebral Aβ plaque load and improved cognitive performance, in correlation with an increased number of T cells, enhanced choroid plexus (CP) gateway activity, and increased number of macrophages in the brain. Furthermore, transplantation of the amyloid precursor protein (APP) gene deleted mESC-TEPs (APP-/-) results in more effective reduction of AD pathology as compared to wild-type (APP+/+) mESC-TEPs. This is associated with the generation of Aβ-specific T cells, which leads to an increase of anti-Aβ antibody (Ab)-producing B cells in the spleen and enhanced levels of anti-Aβ antibodies in the serum, as well as an increase of Aβ phagocytosing macrophages in the CNS. Our results suggest that transplantation of APP-/- human ESC- or induced pluripotent stem cell (iPSC)-derived TEPs may provide a new tool to mitigate AD in patients.
Collapse
Affiliation(s)
- Jin Zhao
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Department of Immunology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, China
| | - Min Su
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Yujun Lin
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Haiyan Liu
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Zhixu He
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States.,University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
25
|
Zhao X, Li S, Gaur U, Zheng W. Artemisinin Improved Neuronal Functions in Alzheimer's Disease Animal Model 3xtg Mice and Neuronal Cells via Stimulating the ERK/CREB Signaling Pathway. Aging Dis 2020; 11:801-819. [PMID: 32765947 PMCID: PMC7390534 DOI: 10.14336/ad.2019.0813] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/13/2019] [Indexed: 01/03/2023] Open
Abstract
The most common form of dementia is Alzheimer’s disease which is characterized by memory loss and cognitive disorders. The pathogenesis of Alzheimer’s disease is not known at present but toxicity of amyloid-beta is one of the central hypotheses. Amyloid-beta can stimulate the production of reactive oxygen species (ROS), cause oxidative stress, damage mitochondrial, cause inflammatory reactions and activate apoptosis related factors which lead to the neuronal death. In this study, we found that artemisinin, a first line antimalarial drug used in clinic for decades, improved the cognitive functions in Alzheimer’s disease animal model 3xTg mice. Further study showed that artemisinin reduced the deposition of amyloid-beta and tau protein, reduced the release of inflammation factors and apoptosis factors, and thereby reduced the neuronal cell death. Western blot assay showed that artemisinin stimulated the activation of ERK/CREB signaling pathway. Consistent with these results, artemisinin concentration-dependently promoted the survival of SH-SY5Y cell against toxicity of amyloid-beta protein 1-42 induced ROS accumulation, caspase activation and apoptosis. Artemisinin also stimulated the phosphorylation of ERK1/2 and CREB in SH-SY5Y cells in time and concentration-dependent manner. Inhibition of ERK/CREB pathway attenuated the protective effect of artemisinin. These data put together suggested that artemisinin has the potential to protect neuronal cells in vitro as well as in vivo animal model 3xTg mice via, at least in part, the activation of the ERK/CREB pathway. Our findings also strongly support the potential of artemisinin as a new multi-target drug that can be used for preventing and treating the Alzheimer’s disease.
Collapse
Affiliation(s)
- Xia Zhao
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Shuai Li
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Uma Gaur
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wenhua Zheng
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
26
|
Role of Kalirin and mouse strain in retention of spatial memory training in an Alzheimer's disease model mouse line. Neurobiol Aging 2020; 95:69-80. [PMID: 32768866 DOI: 10.1016/j.neurobiolaging.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
Nontransgenic and 3xTG transgenic mice, which express mutant transgenes encoding human amyloid precursor protein (hAPP) along with Alzheimer's disease-associated versions of hTau and a presenilin mutation, acquired the Barnes Maze escape task equivalently at 3-9 months of age. Although nontransgenics retested at 6 and 9 months acquired the escape task more quickly than naïve mice, 3xTG mice did not. Deficits in Kalirin, a multidomain protein scaffold and guanine nucleotide exchange factor that regulates dendritic spines, has been proposed as a contributor to the cognitive decline observed in Alzheimer's disease. To test whether deficits in Kalirin might amplify deficits in 3xTG mice, mice heterozygous/hemizygous for Kalirin and the 3xTG transgenes were generated. Mouse strain, age and sex affected cortical expression of key proteins. hAPP levels in 3xTG mice increased total APP levels at all ages. Kalirin expression showed strong sex-dependent expression in C57 but not B6129 mice. Decreasing Kalirin levels to half had no effect on Barnes Maze task acquisition or retraining in 3xTG hemizygous mice.
Collapse
|
27
|
Physical and cognitive training attenuate hippocampal ischemia-induced memory impairments in rat. Brain Res Bull 2020; 155:202-210. [DOI: 10.1016/j.brainresbull.2019.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/15/2019] [Accepted: 10/19/2019] [Indexed: 01/22/2023]
|
28
|
Jafari Z, Kolb BE, Mohajerani MH. Life-Course Contribution of Prenatal Stress in Regulating the Neural Modulation Network Underlying the Prepulse Inhibition of the Acoustic Startle Reflex in Male Alzheimer's Disease Mice. Cereb Cortex 2020; 30:311-325. [PMID: 31070710 PMCID: PMC7029700 DOI: 10.1093/cercor/bhz089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The prepulse inhibition (PPI) of the acoustic startle reflex (ASR), as an index of sensorimotor gating, is one of the most extensively used paradigms in the field of neuropsychiatric disorders. Few studies have examined how prenatal stress (PS) regulates the sensorimotor gating during the lifespan and how PS modifies the development of amyloid-beta (Aβ) pathology in brain areas underlying the PPI formation. We followed alternations in corticosterone levels, learning and memory, and the PPI of the ASR measures in APPNL-G-F/NL-G-F offspring of dams exposed to gestational noise stress. In-depth quantifications of the Aβ plaque accumulation were also performed at 6 months. The results indicated an age-dependent deterioration of sensorimotor gating, long-lasting PS-induced abnormalities in PPI magnitudes, as well as deficits in spatial memory. The PS also resulted in a higher Aβ aggregation predominantly in brain areas associated with the PPI modulation network. The findings suggest the contribution of a PS-induced hypothalamic-pituitary-adrenal (HPA) axis hyperactivity in regulating the PPI modulation substrates leading to the abnormal development of the neural protection system in response to disruptive stimuli. The long-lasting HPA axis dysregulation appears to be the major underlying mechanism in precipitating the Aβ deposition, especially in brain areas contributed to the PPI modulation network.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science, Tehran, Iran
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
29
|
Farokhi-Sisakht F, Farhoudi M, Sadigh-Eteghad S, Mahmoudi J, Mohaddes G. Cognitive Rehabilitation Improves Ischemic Stroke-Induced Cognitive Impairment: Role of Growth Factors. J Stroke Cerebrovasc Dis 2019; 28:104299. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/24/2019] [Accepted: 07/13/2019] [Indexed: 12/20/2022] Open
|
30
|
Age-dependent behavioral and biochemical characterization of single APP knock-in mouse (APP NL-G-F/NL-G-F) model of Alzheimer's disease. Neurobiol Aging 2018; 75:25-37. [PMID: 30508733 DOI: 10.1016/j.neurobiolaging.2018.10.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 12/23/2022]
Abstract
Saito et al developed a novel amyloid precursor protein (APP) knock-in mouse model (APPNL-G-F) for Alzheimer's disease (AD) to overcome the problem of overexpression of APP in available transgenic mouse models. However, this new mouse model for AD is not fully characterized age-dependently with respect to behavioral and biochemical changes. Therefore, in the present study, we performed an age-dependent behavioral and biochemical characterization of this newly developed mouse model. Here, we used 3-, 6-, 9-, and 12-month-old APPNL-G-F and C57BL/6J mice. We used a separate cohort of animals at each age point. Morris water maze, object recognition, and fear-conditioning tests were used for the assessment of learning and memory functions and open-field test to measure the general locomotor activity of mice. After each testing point, we perfused the mice and collected the brain for immunostaining. We performed the immunostaining for amyloid burden (4G8), glial fibrillary acidic protein, choline acetyltransferase, and tyrosine hydroxylase. The results of the present study indicate that APPNL-G-F mice showed age-dependent memory impairments with maximum impairment at the age of 12 months. These mice showed memory impairment in Morris water maze and fear conditioning tests when they were 6 months old, whereas, in object recognition test, memory deficit was found in 9-month-old mice. APPNL-G-F mice age dependently showed an increase in amyloid load in different brain regions. However, no amyloid pathology was found in 3-month-old APPNL-G-F mice. Choline acetyltransferase neurons in medial septum-diagonal band complex and tyrosine hydroxylase neurons in locus coeruleus were decreased significantly in APPNL-G-F mice. This mouse model also indicated an age-dependent increase in glial fibrillary acidic protein load. It can be concluded from the results that the APPNL-G-F mouse model may be used to explore the Aβ hypothesis, molecular, and cellular mechanisms involved in AD pathology and to screen the therapeutic potential compounds for the treatment of AD.
Collapse
|
31
|
Wang Y, Han S, Han R, Su Y, Li J. Propofol-induced downregulation of NR2B membrane translocation in hippocampus and spatial memory deficits of neonatal mice. Brain Behav 2017; 7:e00734. [PMID: 28729940 PMCID: PMC5516608 DOI: 10.1002/brb3.734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Thousands of infants and children are undergoing anesthesia around the world every day. But impacts of anesthetics on the developing neural system remain unclear yet. Previous evidence showed that anesthesia might affect the developing neural system. Thus, early-life anesthesia becomes a critical issue in clinical pediatric practice. Hence, propofol, a short-acting and widely applied intravenous anesthetic, has been gaining focus upon neonatal anesthesia. METHODS Fifty-four male C57BL/6J mice were randomly divided into following three groups: group D6 intraperitoneally (i.p.) injected propofol (100 mg/kg body weight) once a day from postnatal day 6 (P6) to P11, group D1 administrated propofol (100 mg/kg, i.p.) at P6 solely and administrated normal saline (10 ml/kg, i.p.) from P7 to P11, and group N treated with normal saline (10 ml/kg, i.p.) from P6 to P11 as the control (n = 18 per group). Then, at P28, nine mice were collected randomly from each group for NR2B membrane translocation and phosphorylation analysis, and the rest half in each group were assigned to perform Morris water maze tests from P28 to P35. RESULTS Results showed that total protein expression levels of NR2B increased (p < .001) while its membrane translocation decreased (p < .001, n = 9 per group) in the hippocampus but not in the prefrontal cortex of neonatal mice after repeated propofol administration. Phosphorylation levels of NR2B at serine 1303 (D1: p < .05; D6: p < .001, n = 9 per group) and serine 1480 (D1: p < .01, D6: p < .001, n = 9 per group) increased significantly as well in the hippocampus compared with group N. In addition, memory deficits (p < .05, n = 9 per group) were observed in Morris water maze tests of group D6 mice. CONCLUSIONS These results suggested that propofol exposure downregulates NR2B membrane translocation and causes spatial memory deficits, with a mediated increased NR2B protein expression and phosphorylation at Ser1303/1480 residues in the hippocampus of neonatal mice.
Collapse
Affiliation(s)
- Yuzhu Wang
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China
| | - Song Han
- Department of Neurobiology and Center of Stroke Beijing Institute for Brain Disorders Capital Medical University Beijing China
| | - Ruquan Han
- Department of Anesthesiology Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Yue Su
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China
| | - Junfa Li
- Department of Neurobiology and Center of Stroke Beijing Institute for Brain Disorders Capital Medical University Beijing China
| |
Collapse
|
32
|
Hamm V, Héraud C, Cassel JC, Mathis C, Goutagny R. Precocious Alterations of Brain Oscillatory Activity in Alzheimer's Disease: A Window of Opportunity for Early Diagnosis and Treatment. Front Cell Neurosci 2015; 9:491. [PMID: 26733816 PMCID: PMC4685112 DOI: 10.3389/fncel.2015.00491] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/04/2015] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia accounting for 50-80% of all age-related dementia. This pathology is characterized by the progressive and irreversible alteration of cognitive functions, such as memory, leading inexorably to the loss of autonomy for patients with AD. The pathology is linked with aging and occurs most commonly around 65 years old. Its prevalence (5% over 65 years of age and 20% after 80 years) constitutes an economic and social burden for AD patients and their family. At the present, there is still no cure for AD, actual treatments being moderately effective only in early stages of the pathology. A lot of efforts have been deployed with the aim of defining new AD biomarkers. Successful early detection of mild cognitive impairment (MCI) linked to AD requires the identification of biomarkers capable of distinguishing individuals with early stages of AD from other pathologies impacting cognition such as depression. In this article, we will review recent evidence suggesting that electroencephalographic (EEG) recordings, coupled with behavioral assessments, could be a useful approach and easily implementable for a precocious detection of AD.
Collapse
Affiliation(s)
- Valentine Hamm
- Centre National de la Recherche Scientifique UMR 7364, Laboratoire de Neurosciences Cognitives et AdaptativesStrasbourg, France; Université de Strasbourg, Neuropôle de StrasbourgStrasbourg, France
| | - Céline Héraud
- Centre National de la Recherche Scientifique UMR 7364, Laboratoire de Neurosciences Cognitives et AdaptativesStrasbourg, France; Université de Strasbourg, Neuropôle de StrasbourgStrasbourg, France
| | - Jean-Christophe Cassel
- Centre National de la Recherche Scientifique UMR 7364, Laboratoire de Neurosciences Cognitives et AdaptativesStrasbourg, France; Université de Strasbourg, Neuropôle de StrasbourgStrasbourg, France
| | - Chantal Mathis
- Centre National de la Recherche Scientifique UMR 7364, Laboratoire de Neurosciences Cognitives et AdaptativesStrasbourg, France; Université de Strasbourg, Neuropôle de StrasbourgStrasbourg, France
| | - Romain Goutagny
- Centre National de la Recherche Scientifique UMR 7364, Laboratoire de Neurosciences Cognitives et AdaptativesStrasbourg, France; Université de Strasbourg, Neuropôle de StrasbourgStrasbourg, France
| |
Collapse
|