1
|
Scheier ZA, Sturm KL, Colavecchio JA, Pradhan A, Otazu GH. Role of Odor Novelty on Olfactory Issues in Autism Spectrum Disorder. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70008. [PMID: 39723617 DOI: 10.1111/gbb.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Sensory processing abnormalities are a hallmark of autism spectrum disorder (ASD) and are included in its diagnostic criteria. Among these challenges, food neophobia has garnered attention due to its prevalence and potential impact on nutritional intake and health outcomes. This review describes the correlation between novel odor perception and feeding difficulties within the context of ASD. Moreover, this review underscores the role of odor processing in shaping feeding behaviors within the ASD population. It examines the psychophysics of odor perception in individuals with ASD and evaluates the behavioral and neurophysiological assessments conducted using novel odor stimuli in mouse models relevant to autism and wild-type mice. Additionally, we explore the mechanism on how odor novelty affects neuronal circuitry, shedding light on potential underlying mechanisms for the effect of odor novelty on ASD.
Collapse
Affiliation(s)
- Zoe A Scheier
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, USA
| | - Kassandra L Sturm
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, USA
| | - John A Colavecchio
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, USA
| | - Apekchha Pradhan
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, USA
| | - Gonzalo H Otazu
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, USA
| |
Collapse
|
2
|
Alymov AA, Kapitsa IG, Voronina TA. Behavioral Effects of Afobazole in an Experimental Model of Autism Spectrum Disorders. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Lyons-Warren AM, Herman I, Hunt PJ, Arenkiel BR. A systematic-review of olfactory deficits in neurodevelopmental disorders: From mouse to human. Neurosci Biobehav Rev 2021; 125:110-121. [PMID: 33610612 PMCID: PMC8142839 DOI: 10.1016/j.neubiorev.2021.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 01/07/2023]
Abstract
Olfactory impairment is a common clinical motif across neurodevelopmental disorders, suggesting olfactory circuits are particularly vulnerable to disease processes and can provide insight into underlying disease mechanisms. The mouse olfactory bulb is an ideal model system to study mechanisms of neurodevelopmental disease due to its anatomical accessibility, behavioral relevance, ease of measuring circuit input and output, and the feature of adult neurogenesis. Despite the clinical relevance and experimental benefits, olfactory testing across animal models of neurodevelopmental disease has been inconsistent and non-standardized. Here we performed a systematic literature review of olfactory function testing in mouse models of neurodevelopmental disorders, and identified intriguing inconsistencies that include evidence for both increased and decreased acuity in odor detection in various mouse models of Autism Spectrum Disorder (ASD). Based on our identified gaps in the literature, we recommend direct comparison of different mouse models of ASD using standardized tests for odor detection and discrimination. This review provides a framework to guide future olfactory function testing in mouse models of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Ariel M Lyons-Warren
- Baylor College of Medicine, Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience; Clinical Care Center, Suite 1250, 6621 Fannin St, Houston, TX 77030, United States of America;,Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030 USA
| | - Isabella Herman
- Baylor College of Medicine, Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience; Clinical Care Center, Suite 1250, 6621 Fannin St, Houston, TX 77030, United States of America;,Baylor College of Medicine, Department of Molecular & Human Genetics; 1250 Moursund Street, Suite 1170.12, Houston TX 77030, United States of America
| | - Patrick J Hunt
- Baylor College of Medicine, Department of Molecular & Human Genetics; 1250 Moursund Street, Suite 1170.12, Houston TX 77030, United States of America
| | - Benjamin R Arenkiel
- Baylor College of Medicine, Department of Molecular & Human Genetics; 1250 Moursund Street, Suite 1170.12, Houston TX 77030, United States of America;,Baylor College of Medicine, Department of Neuroscience; 1250 Moursund Street, Suite 1170.12, Houston TX 77030, United States of America;,Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030 USA.,McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
4
|
Inhibitory control in BALB/c mice sub-strains during extinction learning. Eur Neuropsychopharmacol 2019; 29:509-518. [PMID: 30851996 DOI: 10.1016/j.euroneuro.2019.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/19/2018] [Accepted: 02/02/2019] [Indexed: 01/18/2023]
Abstract
Dysregulation of executive function (EF) involves alterations in cognitive flexibility / control and is underscored by learning impairments in neurodevelopmental disorders. Here, we examine cognitive inflexibility in BALB/cJ mice (a mouse model showing diminished sociability, increased anxiety and inattentive behaviour) and closely related "reference" BALB/cByJ mice. We used an appetitive extinction paradigm to investigate if cognitive flexibility measures are different between learning acquisition and extinction. The two BALB/c sub-strains learned to respond to a stimulus in a touchscreen operant chamber, after which the reward was removed and responses should be inhibited. Both mice sub-strains showed a different rate of learning while acquiring the task, in which the BALB/cJ mice were faster learners compared to the BALB/cByJ mice. This was not observed during the extinction phase, in which the BALB/cJ mice were able to extinguish responding to unrewarded stimuli equally. Within the BALB/cJ sub-strain, variation in the ability to inhibit a learnt response was observed when comparing them to similar grouped BALB/cByJ mice: BALB/cJ animals that reached the criterion were more reward driven, while BALB/cJ mice failing to reach the set criterion during extinction processing make more mistakes. Additionally, the changes observed during acquisition, were driven by animals not reaching the extinction criterion. Our results suggest that the BALB/c mice sub-strains may use different strategies to learn during appetitive extinction. This may be useful in the phenotypic dissection of cognitive flexibility in BALB/c sub-strains and their mapping on genetic variance revealed by next-generation sequencing in future studies.
Collapse
|