1
|
Missaghi K, Le Gal JP, Mercier J, Grover M, Beauséjour PA, Chartré S, Messihad O, Auclair F, Dubuc R. Revisiting the two rhythm generators for respiration in lampreys. Front Neuroanat 2024; 17:1270535. [PMID: 38250023 PMCID: PMC10796688 DOI: 10.3389/fnana.2023.1270535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024] Open
Abstract
In lampreys, respiration consists of a fast and a slow rhythm. This study was aimed at characterizing both anatomically and physiologically the brainstem regions involved in generating the two rhythms. The fast rhythm generator has been located by us and others in the rostral hindbrain, rostro-lateral to the trigeminal motor nucleus. More recently, this was challenged by researchers reporting that the fast rhythm generator was located more rostrally and dorsomedially, in a region corresponding to the mesencephalic locomotor region. These contradictory observations made us re-examine the location of the fast rhythm generator using anatomical lesions and physiological recordings. We now confirm that the fast respiratory rhythm generator is in the rostro-lateral hindbrain as originally described. The slow rhythm generator has received less attention. Previous studies suggested that it was composed of bilateral, interconnected rhythm generating regions located in the caudal hindbrain, with ascending projections to the fast rhythm generator. We used anatomical and physiological approaches to locate neurons that could be part of this slow rhythm generator. Combinations of unilateral injections of anatomical tracers, one in the fast rhythm generator area and another in the lateral tegmentum of the caudal hindbrain, were performed to label candidate neurons on the non-injected side of the lateral tegmentum. We found a population of neurons extending from the facial to the caudal vagal motor nuclei, with no clear clustering in the cell distribution. We examined the effects of stimulating different portions of the labeled population on the respiratory activity. The rostro-caudal extent of the population was arbitrarily divided in three portions that were each stimulated electrically or chemically. Stimulation of either of the three sites triggered bursts of discharge characteristic of the slow rhythm, whereas inactivating any of them stopped the slow rhythm. Substance P injected locally in the lateral tegmentum accelerated the slow respiratory rhythm in a caudal hindbrain preparation. Our results show that the fast respiratory rhythm generator consists mostly of a population of neurons rostro-lateral to the trigeminal motor nucleus, whereas the slow rhythm generator is distributed in the lateral tegmentum of the caudal hindbrain.
Collapse
Affiliation(s)
- Kianoush Missaghi
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | | | - Julien Mercier
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
- Groupe de Recherche en Activité Physique Adaptée (GRAPA), Département des Sciences de l’Activité Physique, Université du Québec à Montréal, Montréal, QC, Canada
| | - Martin Grover
- Groupe de Recherche en Activité Physique Adaptée (GRAPA), Département des Sciences de l’Activité Physique, Université du Québec à Montréal, Montréal, QC, Canada
| | | | - Shannon Chartré
- Groupe de Recherche en Activité Physique Adaptée (GRAPA), Département des Sciences de l’Activité Physique, Université du Québec à Montréal, Montréal, QC, Canada
| | - Omima Messihad
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - François Auclair
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Réjean Dubuc
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
- Groupe de Recherche en Activité Physique Adaptée (GRAPA), Département des Sciences de l’Activité Physique, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Glycine and GABAA receptors suppressively regulate the inspiratory-related calcium rise in the thoracic inspiratory cells of the neonatal rat. J Physiol Sci 2022; 72:24. [PMID: 36192688 DOI: 10.1186/s12576-022-00850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022]
Abstract
We previously demonstrated that in an isolated brainstem-spinal cord preparation from neonatal rats, a local bath application of strychnine (a broad antagonist of glycine and GABAA receptors) to the spinal cord enhances thoracic inspiratory motor activity. Herein, to investigate the involvement of the inspiratory spinal interneurons that provide excitatory input to the motoneuron, we conducted calcium imaging using this preparation. Oregon Green 488 BAPTA-1 AM, a fluorescent calcium indicator, was injected into the ventromedial surface of the thoracic cord. In all cells that showed inspiratory-related fluorescence changes > 2% of the baseline fluorescence intensity, the inspiratory-related fluorescence change decreased when the focal depth was deepened. The application of strychnine to the spinal cord increased the inspiratory-related intracellular calcium rise in these cells. These results suggest that the enhancement of inspiratory interneuron activity could be involved in this enhancement of inspiratory motor activity.
Collapse
|
3
|
Kajiwara R, Nakamura S, Ikeda K, Onimaru H, Yoshida A, Tsutsumi Y, Nakayama K, Mochizuki A, Dantsuji M, Nishimura A, Tachikawa S, Iijima T, Inoue T. Intrinsic properties and synaptic connectivity of Phox2b-expressing neurons in rat rostral parvocellular reticular formation. Neurosci Res 2021; 178:41-51. [PMID: 34973291 DOI: 10.1016/j.neures.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
The paired-like homeobox 2b gene (Phox2b) is critical for the development of the autonomic nervous system. We have previously demonstrated the distinct characteristics of Phox2b-expressing (Phox2b+) neurons in the reticular formation dorsal to the trigeminal motor nucleus (RdV), which are likely related to jaw movement regulation. In this study, we focused on Phox2b+ neurons in the rostral parvocellular reticular formation (rPCRt), a critical region for controlling orofacial functions, using 2-11-day-old Phox2b-EYFP rats. Most Phox2b+ rPCRt neurons were glutamatergic, but not GABAergic or glycinergic. Approximately 65 % of Phox2b+ rPCRt neurons fired at a low frequency, and approximately 24 % of Phox2b+ rPCRt neurons fired spontaneously, as opposed to Phox2b+ RdV neurons. Stimulation of the RdV evoked inward postsynaptic currents in more than 50 % of Phox2b+ rPCRt neurons, while only one Phox2b+ rPCRt neuron responded to stimulation of the nucleus of the solitary tract. Five of the 10 Phox2b+ neurons sent their axons that ramified within the trigeminal motor nucleus (MoV). Of these, the axons of the two neurons terminated within both the MoV and rPCRt. Our findings suggest that Phox2b+ rPCRt neurons have distinct electrophysiological and synaptic properties that may be involved in the motor control of feeding behavior.
Collapse
Affiliation(s)
- Risa Kajiwara
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Keiko Ikeda
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yumi Tsutsumi
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kiyomi Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masanori Dantsuji
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Akiko Nishimura
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Satoshi Tachikawa
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Takehiko Iijima
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
4
|
Onimaru H, Yazawa I, Takeda K, Fukushi I, Okada Y. Calcium Imaging Analysis of Cellular Responses to Hypercapnia and Hypoxia in the NTS of Newborn Rat Brainstem Preparation. Front Physiol 2021; 12:645904. [PMID: 33841182 PMCID: PMC8027497 DOI: 10.3389/fphys.2021.645904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/08/2021] [Indexed: 01/13/2023] Open
Abstract
It is supposed that the nucleus of the solitary tract (NTS) in the dorsal medulla includes gas sensor cells responsive to hypercapnia or hypoxia in the central nervous system. In the present study, we analyzed cellular responses to hypercapnia and hypoxia in the NTS region of newborn rat in vitro preparation. The brainstem and spinal cord were isolated from newborn rat (P0-P4) and were transversely cut at the level of the rostral area postrema. To detect cellular responses, calcium indicator Oregon Green was pressure-injected into the NTS just beneath the cut surface of either the caudal or rostral block of the medulla, and the preparation was superfused with artificial cerebrospinal fluid (25–26°C). We examined cellular responses initially to hypercapnic stimulation (to 8% CO2 from 2% CO2) and then to hypoxic stimulation (to 0% O2 from 95% O2 at 5% CO2). We tested these responses in standard solution and in two different synapse blockade solutions: (1) cocktail blockers solution including bicuculline, strychnine, NBQX and MK-801 or (2) TTX solution. At the end of the experiments, the superfusate potassium concentration was lowered to 0.2 from 3 mM to classify recorded cells into neurons and astrocytes. Excitation of cells was detected as changes of fluorescence intensity with a confocal calcium imaging system. In the synaptic blockade solutions (cocktail or TTX solution), 7.6 and 8% of the NTS cells responded to hypercapnic and hypoxic stimulation, respectively, and approximately 2% of them responded to both stimulations. Some of these cells responded to low K+, and they were classified into astrocytes comprising 43% hypercapnia-sensitive cells, 56% hypoxia-sensitive cells and 54% of both stimulation-sensitive cells. Of note, 49% of the putative astrocytes identified by low K+ stimulation were sensitive to hypercapnia, hypoxia or both. In the presence of a glia preferential blocker, 5 mM fluoroacetate (plus 0.5 μM TTX), the percentage of hypoxia-sensitive cells was significantly reduced compared to those of all other conditions. This is the first study to reveal that the NTS includes hypercapnia and hypoxia dual-sensitive cells. These results suggest that astrocytes in the NTS region could act as a central gas sensor.
Collapse
Affiliation(s)
- Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Itaru Yazawa
- Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Toyoake, Japan
| | - Isato Fukushi
- Faculty of Health Sciences, Uekusa Gakuen University, Chiba, Japan.,Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| |
Collapse
|
5
|
Paton JFR. Clarity of the rhythmic brainstem. J Physiol 2020; 598:2045-2046. [PMID: 32196662 DOI: 10.1113/jp279732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/18/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Julian F R Paton
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Park Road, Grafton, Auckland, 1142, New Zealand
| |
Collapse
|
6
|
Optogenetic analysis of respiratory neuronal networks in the ventral medulla of neonatal rats producing channelrhodopsin in Phox2b-positive cells. Pflugers Arch 2019; 471:1419-1439. [DOI: 10.1007/s00424-019-02317-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/06/2019] [Accepted: 10/04/2019] [Indexed: 12/19/2022]
|
7
|
Ikeda K, Kaneko R, Yanagawa Y, Ogawa M, Kobayashi K, Arata S, Kawakami K, Onimaru H. Analysis of the neuronal network of the medullary respiratory center in transgenic rats expressing archaerhodopsin-3 in Phox2b-expressing cells. Brain Res Bull 2018; 144:39-45. [PMID: 30448454 DOI: 10.1016/j.brainresbull.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 11/18/2022]
Abstract
Preinspiratory (Pre-I) neurons in the parafacial respiratory group (pFRG) comprise one of the respiratory rhythm generators in the medulla of the neonatal rat. A subgroup of pFRG/Pre-I neurons expresses the transcription factor Phox2b. To further analyze detailed neuronal mechanisms of respiratory rhythm generation in the neonatal rat, we developed a transgenic (Tg) rat line in which Phox2b-positive cells expressed archaerhodopsin-3 (Arch). Brainstem-spinal cord preparations were isolated from 0-2-day-old Tg newborn rats and were superfused with artificial cerebrospinal fluid equilibrated with 95% O2 and 5% CO2, pH 7.4, at 25-26 °C. Inspiratory fourth cervical ventral root (C4) activity was monitored, and membrane potentials of neurons in the pFRG including Pre-I and inspiratory neurons were recorded. Phox2b-positive cells in the Tg rats were essentially positive for enhanced green fluorescent protein (EGFP) signals (reporter for Arch) in the pFRG. Continuous photo-stimulation of the rostral ventral medulla for up to 90 s by covering the pFRG with green laser light (532 nm) induced a decrease of respiratory rate measured at C4 accompanied by membrane hyperpolarization of Phox2b-positive pFRG/Pre-I neurons. In contrast, Phox2b-negative inspiratory neurons were not hyperpolarized during the photo-stimulation. Our findings showed that Phox2b-expressing pFRG/Pre-I neurons are involved in the maintenance of the basic respiratory rhythm in neonatal rat.
Collapse
Affiliation(s)
- Keiko Ikeda
- Department of Physiology, International University of Health and Welfare (IUHW), 4-3 Kozunomori, Narita City, Chiba 286-8686, Japan
| | - Ryosuke Kaneko
- Bioresource Center, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Yuchio Yanagawa
- Department of Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Masaaki Ogawa
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Satoru Arata
- Center for Biotechnology, Showa University, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan.
| |
Collapse
|