1
|
Dettori I, Bulli I, Venturini M, Magni G, Cherchi F, Rossi F, Lee H, Pedata F, Jacobson KA, Pugliese AM, Coppi E. MRS3997, a dual adenosine A 2A/A 2B receptor agonist, reduces brain ischemic damage and alleviates neuroinflammation in rats. Neuropharmacology 2025; 262:110214. [PMID: 39522676 DOI: 10.1016/j.neuropharm.2024.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The endogenous neuromodulator adenosine is massively released during hypoxic/ischemic insults and differentially modulates post-ischemic damage depending on the expression and recruitment of its four metabotropic receptor subtypes, namely A1, A2A, A2B and A3 receptors (A1Rs, A2ARs, A2BRs and A3Rs). We previously demonstrated, by using a model of transient middle cerebral artery occlusion (tMCAo) in rats, that selective activation of A2ARs, as well as A2BRs, ameliorates post-ischemic brain damage in contrast to neuroinflammation. In the present study, we investigated whether the multitarget nucleoside MRS3997, a full agonist at both A2ARs and A2BRs, would afford higher neuroprotection in post-ischemic damage. Chronic systemic treatment with MRS3997 reduced neurological deficit, body weight loss and infarct volume in the cortex and striatum measured 7 days after ischemia. The dual agonist counteracted neuronal loss, reduced myelin damage, and prevented morphological changes indicative of microglia and astrocyte activation. Finally, MRS3997 shifted plasma cytokine levels to an anti-inflammatory profile. These effects were preceded, at 2 days after the insult, by a reduced granulocyte infiltration in the ischemic cortex and, differently from what was observed with selective A2AR or A2BR agonism, also in striatum. In summary, we demonstrate here that MRS3997, systemically administered for 7 days after tMCAO, protects ischemic areas from neuronal and glial damage and inhibits neuroinflammation, therefore representing an attractive strategy to ameliorate post-stroke damage and neurological symptoms.
Collapse
Affiliation(s)
- Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Giada Magni
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Sesto Fiorentino, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Rossi
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Sesto Fiorentino, Florence, Italy
| | - Hobin Lee
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabe-tes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabe-tes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Cherchi F, Venturini M, Magni G, Frulloni L, Chieca M, Buonvicino D, Santalmasi C, Rossi F, De Logu F, Coppi E, Pugliese AM. Adenosine A 2B receptors differently modulate oligodendrogliogenesis and myelination depending on their cellular localization. Glia 2024; 72:1985-2000. [PMID: 39077799 DOI: 10.1002/glia.24593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs) is a key event for axonal myelination in the brain; this process fails during demyelinating pathologies. Adenosine is emerging as an important player in oligodendrogliogenesis, by activating its metabotropic receptors (A1R, A2AR, A2BR, and A3R). We previously demonstrated that the Gs-coupled A2BR reduced differentiation of primary OPC cultures by inhibiting delayed rectifier (IK) as well as transient (IA) outward K+ currents. To deepen the unclear role of this receptor subtype in neuron-OL interplay and in myelination process, we tested the effects of different A2BR ligands in a dorsal root ganglion neuron (DRGN)/OPC cocultures, a corroborated in vitro myelination assay. The A2BR agonist, BAY60-6583, significantly reduced myelin basic protein levels but simultaneously increased myelination index in DRGN/OPC cocultures analyzed by confocal microscopy. The last effect was prevented by the selective A2BR antagonists, PSB-603 and MRS1706. To clarify this unexpected data, we wondered whether A2BRs could play a functional role on DRGNs. We first demonstrated, by immunocytochemistry, that primary DRGN monoculture expressed A2BRs. Their selective activation by BAY60-6583 enhanced DRGN excitability, as demonstrated by increased action potential firing, decreased rheobase and depolarized resting membrane potential and were prevented by PSB-603. Throughout this A2BR-dependent enhancement of neuronal activity, DRGNs could release factors to facilitate myelination processes. Finally, silencing A2BR in DRGNs alone prevents the increased myelination induced by BAY60-6583 in cocultures. In conclusion, our data suggest a different role of A2BR during oligodendrogliogenesis and myelination, depending on their activation on neurons or oligodendroglial cells.
Collapse
Affiliation(s)
- Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Giada Magni
- Cnr-Istituto di Fisica Applicata "Nello Carrara", Florence, Italy
| | - Lucia Frulloni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Martina Chieca
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Clara Santalmasi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Francesca Rossi
- Cnr-Istituto di Fisica Applicata "Nello Carrara", Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
3
|
Cortes S, Farhat E, Talarico G, Mennigen JA. The dynamic transcriptomic response of the goldfish brain under chronic hypoxia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101233. [PMID: 38608489 DOI: 10.1016/j.cbd.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Oxygen is essential to fuel aerobic metabolism. Some species evolved mechanisms to tolerate periods of severe hypoxia and even anoxia in their environment. Among them, goldfish (Carassius auratus) are unique, in that they do not enter a comatose state under severely hypoxic conditions. There is thus significant interest in the field of comparative physiology to uncover the mechanistic basis underlying hypoxia tolerance in goldfish, with a particular focus on the brain. Taking advantage of the recently published and annotated goldfish genome, we profile the transcriptomic response of the goldfish brain under normoxic (21 kPa oxygen saturation) and, following gradual reduction, constant hypoxic conditions after 1 and 4 weeks (2.1 kPa oxygen saturation). In addition to analyzing differentially expressed protein-coding genes and enriched pathways, we also profile differentially expressed microRNAs (miRs). Using in silico approaches, we identify possible miR-mRNA relationships. Differentially expressed transcripts compared to normoxia were either common to both timepoints of hypoxia exposure (n = 174 mRNAs; n = 6 miRs), or exclusive to 1-week (n = 441 mRNAs; n = 23 miRs) or 4-week hypoxia exposure (n = 491 mRNAs; n = 34 miRs). Under chronic hypoxia, an increasing number of transcripts, including those of paralogous genes, was downregulated over time, suggesting a decrease in transcription. GO-terms related to the vascular system, oxidative stress, stress signalling, oxidoreductase activity, nucleotide- and intermediary metabolism, and mRNA posttranscriptional regulation were found to be enriched under chronic hypoxia. Known 'hypoxamiRs', such as miR-210-3p/5p, and miRs such as miR-29b-3p likely contribute to posttranscriptional regulation of these pathways under chronic hypoxia in the goldfish brain.
Collapse
Affiliation(s)
- S Cortes
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada; Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - E Farhat
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada; Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Ggm Talarico
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada
| | - J A Mennigen
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Venturini M, Cherchi F, Santalmasi C, Frulloni L, Dettori I, Catarzi D, Pedata F, Colotta V, Varano F, Coppi E, Pugliese AM. Pharmacological Characterization of P626, a Novel Dual Adenosine A 2A/A 2B Receptor Antagonist, on Synaptic Plasticity and during an Ischemic-like Insult in CA1 Rat Hippocampus. Biomolecules 2023; 13:894. [PMID: 37371474 DOI: 10.3390/biom13060894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, the use of multi-target compounds has become an increasingly pursued strategy to treat complex pathologies, including cerebral ischemia. Adenosine and its receptors (A1AR, A2AAR, A2BAR, A3AR) are known to play a crucial role in synaptic transmission either in normoxic or ischemic-like conditions. Previous data demonstrate that the selective antagonism of A2AAR or A2BAR delays anoxic depolarization (AD) appearance, an unequivocal sign of neuronal injury induced by a severe oxygen-glucose deprivation (OGD) insult in the hippocampus. Furthermore, the stimulation of A2AARs or A2BARs by respective selective agonists, CGS21680 and BAY60-6583, increases pre-synaptic neurotransmitter release, as shown by the decrease in paired-pulse facilitation (PPF) at Schaffer collateral-CA1 synapses. In the present research, we investigated the effect/s of the newly synthesized dual A2AAR/A2BAR antagonist, P626, in preventing A2AAR- and/or A2BAR-mediated effects by extracellular recordings of synaptic potentials in the CA1 rat hippocampal slices. We demonstrated that P626 prevented PPF reduction induced by CGS21680 or BAY60-6583 and delayed, in a concentration-dependent manner, AD appearance during a severe OGD. In conclusion, P626 may represent a putative neuroprotective compound for stroke treatment with the possible translational advantage of reducing side effects and bypassing differences in pharmacokinetics due to combined treatment.
Collapse
Affiliation(s)
- Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Clara Santalmasi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Lucia Frulloni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Daniela Catarzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Vittoria Colotta
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Flavia Varano
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| |
Collapse
|
5
|
Coppi E, Gibb AJ. Selective block of adenosine A 2A receptors prevents ischaemic-like effects induced by oxygen and glucose deprivation in rat medium spiny neurons. Br J Pharmacol 2022; 179:4844-4856. [PMID: 35817954 PMCID: PMC9796695 DOI: 10.1111/bph.15922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/20/2022] [Accepted: 06/26/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Ischaemia is known to cause massive neuronal depolarization, termed anoxic depolarization (AD), due to energy failure and loss of membrane ion gradients. The neuromodulator adenosine accumulates extracellularly during ischaemia and activates four metabotropic receptors: A1 , A2A , A2B and A3 . Striatal medium spiny neurons (MSNs) express high levels of A2A receptors and are particularly vulnerable to ischaemic insults. A2A Receptor blockade reduces acute striatal post-ischaemic damage but the cellular mechanisms involved are still unknown. EXPERIMENTAL APPROACH We performed patch-clamp recordings of MSNs in rat striatal slices subjected to oxygen and glucose deprivation (OGD) to investigate the effects of A2A receptor ligands or ion channel blockers on AD and OGD-induced ionic imbalance, measured as a positive shift in Erev of ramp currents. KEY RESULTS Our data indicate that the A2A receptor antagonist SCH58261 (10 μM) significantly attenuated ionic imbalance and AD appearance in MSNs exposed to OGD. The K+ channel blocker Ba2+ (2 mM) or the Na+ channel blocker tetrodotoxin (1 μM) exacerbated and attenuated, respectively, OGD-induced changes. Spontaneous excitatory post-synaptic current (sEPSC) analysis in MSNs revealed that the A2A receptor agonist CGS21680 (1 μM) prevented OGD-induced decrease of sEPSCs within the first 5 min of the insult, an effect shared by the K+ channel blocker Ba2+ , indicating facilitated glutamate release. CONCLUSION AND IMPLICATIONS Adenosine, released during striatal OGD, activates A2A receptors that may exacerbate OGD-induced damage through K+ channel inhibition. Our results could help to develop A2A receptor-selective therapeutic tools for the treatment of brain ischaemia.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child HealthUniversity of FlorenceFlorenceItaly
| | - Alasdair J. Gibb
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| |
Collapse
|
6
|
Coppi E, Cherchi F, Venturini M, Lucarini E, Corradetti R, Di Cesare Mannelli L, Ghelardini C, Pedata F, Pugliese AM. Therapeutic Potential of Highly Selective A 3 Adenosine Receptor Ligands in the Central and Peripheral Nervous System. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061890. [PMID: 35335254 PMCID: PMC8952202 DOI: 10.3390/molecules27061890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022]
Abstract
Ligands of the Gi protein-coupled adenosine A3 receptor (A3R) are receiving increasing interest as attractive therapeutic tools for the treatment of a number of pathological conditions of the central and peripheral nervous systems (CNS and PNS, respectively). Their safe pharmacological profiles emerging from clinical trials on different pathologies (e.g., rheumatoid arthritis, psoriasis and fatty liver diseases) confer a realistic translational potential to these compounds, thus encouraging the investigation of highly selective agonists and antagonists of A3R. The present review summarizes information on the effect of latest-generation A3R ligands, not yet available in commerce, obtained by using different in vitro and in vivo models of various PNS- or CNS-related disorders. This review places particular focus on brain ischemia insults and colitis, where the prototypical A3R agonist, Cl-IB-MECA, and antagonist, MRS1523, have been used in research studies as reference compounds to explore the effects of latest-generation ligands on this receptor. The advantages and weaknesses of these compounds in terms of therapeutic potential are discussed.
Collapse
|
7
|
Emerging roles of dysregulated adenosine homeostasis in brain disorders with a specific focus on neurodegenerative diseases. J Biomed Sci 2021; 28:70. [PMID: 34635103 PMCID: PMC8507231 DOI: 10.1186/s12929-021-00766-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
In modern societies, with an increase in the older population, age-related neurodegenerative diseases have progressively become greater socioeconomic burdens. To date, despite the tremendous effort devoted to understanding neurodegenerative diseases in recent decades, treatment to delay disease progression is largely ineffective and is in urgent demand. The development of new strategies targeting these pathological features is a timely topic. It is important to note that most degenerative diseases are associated with the accumulation of specific misfolded proteins, which is facilitated by several common features of neurodegenerative diseases (including poor energy homeostasis and mitochondrial dysfunction). Adenosine is a purine nucleoside and neuromodulator in the brain. It is also an essential component of energy production pathways, cellular metabolism, and gene regulation in brain cells. The levels of intracellular and extracellular adenosine are thus tightly controlled by a handful of proteins (including adenosine metabolic enzymes and transporters) to maintain proper adenosine homeostasis. Notably, disruption of adenosine homeostasis in the brain under various pathophysiological conditions has been documented. In the past two decades, adenosine receptors (particularly A1 and A2A adenosine receptors) have been actively investigated as important drug targets in major degenerative diseases. Unfortunately, except for an A2A antagonist (istradefylline) administered as an adjuvant treatment with levodopa for Parkinson's disease, no effective drug based on adenosine receptors has been developed for neurodegenerative diseases. In this review, we summarize the emerging findings on proteins involved in the control of adenosine homeostasis in the brain and discuss the challenges and future prospects for the development of new therapeutic treatments for neurodegenerative diseases and their associated disorders based on the understanding of adenosine homeostasis.
Collapse
|
8
|
Uncovering the Mechanisms of Adenosine Receptor-Mediated Pain Control: Focus on the A 3 Receptor Subtype. Int J Mol Sci 2021; 22:ijms22157952. [PMID: 34360719 PMCID: PMC8347395 DOI: 10.3390/ijms22157952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Agonists of the Gi protein-coupled A3 adenosine receptor (A3AR) have shown important pain-relieving properties in preclinical settings of several pain models. Active as a monotherapy against chronic pain, A3AR agonists can also be used in combination with classic opioid analgesics. Their safe pharmacological profile, as shown by clinical trials for other pathologies, i.e., rheumatoid arthritis, psoriasis and fatty liver diseases, confers a realistic translational potential, thus encouraging research studies on the molecular mechanisms underpinning their antinociceptive actions. A number of pathways, involving central and peripheral mechanisms, have been proposed. Recent evidence showed that the prototypical A3AR agonist Cl-IB-MECA and the new, highly selective, A3AR agonist MRS5980 inhibit neuronal (N-type) voltage-dependent Ca2+ currents in dorsal root ganglia, a known pain-related mechanism. Other proposed pathways involve reduced cytokine production, immune cell-mediated responses, as well as reduced microglia and astrocyte activation in the spinal cord. The aim of this review is to summarize up-to-date information on A3AR in the context of pain, including cellular and molecular mechanisms underlying this effect. Based on their safety profile shown in clinical trials for other pathologies, A3AR agonists are proposed as novel, promising non-narcotic agents for pain control.
Collapse
|
9
|
Bormann D, Stojanovic T, Cicvaric A, Schuld GJ, Cabatic M, Ankersmit HJ, Monje FJ. miRNA-132/212 Gene-Deletion Aggravates the Effect of Oxygen-Glucose Deprivation on Synaptic Functions in the Female Mouse Hippocampus. Cells 2021; 10:1709. [PMID: 34359879 PMCID: PMC8306255 DOI: 10.3390/cells10071709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/29/2022] Open
Abstract
Cerebral ischemia and its sequelae, which include memory impairment, constitute a leading cause of disability worldwide. Micro-RNAs (miRNA) are evolutionarily conserved short-length/noncoding RNA molecules recently implicated in adaptive/maladaptive neuronal responses to ischemia. Previous research independently implicated the miRNA-132/212 cluster in cholinergic signaling and synaptic transmission, and in adaptive/protective mechanisms of neuronal responses to hypoxia. However, the putative role of miRNA-132/212 in the response of synaptic transmission to ischemia remained unexplored. Using hippocampal slices from female miRNA-132/212 double-knockout mice in an established electrophysiological model of ischemia, we here describe that miRNA-132/212 gene-deletion aggravated the deleterious effect of repeated oxygen-glucose deprivation insults on synaptic transmission in the dentate gyrus, a brain region crucial for learning and memory functions. We also examined the effect of miRNA-132/212 gene-deletion on the expression of key mediators in cholinergic signaling that are implicated in both adaptive responses to ischemia and hippocampal neural signaling. miRNA-132/212 gene-deletion significantly altered hippocampal AChE and mAChR-M1, but not α7-nAChR or MeCP2 expression. The effects of miRNA-132/212 gene-deletion on hippocampal synaptic transmission and levels of cholinergic-signaling elements suggest the existence of a miRNA-132/212-dependent adaptive mechanism safeguarding the functional integrity of synaptic functions in the acute phase of cerebral ischemia.
Collapse
Affiliation(s)
- Daniel Bormann
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (D.B.); (T.S.); (G.J.S.); (M.C.)
- Laboratory for Cardiac and Thoracic Diagnosis, Department of Surgery, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria;
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Tamara Stojanovic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (D.B.); (T.S.); (G.J.S.); (M.C.)
| | - Ana Cicvaric
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Gabor J. Schuld
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (D.B.); (T.S.); (G.J.S.); (M.C.)
| | - Maureen Cabatic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (D.B.); (T.S.); (G.J.S.); (M.C.)
| | - Hendrik Jan Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Department of Surgery, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria;
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Aposcience AG, Dresdner Straße 87/A 21, 1200 Vienna, Austria
| | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (D.B.); (T.S.); (G.J.S.); (M.C.)
| |
Collapse
|
10
|
Coppi E, Cencetti F, Cherchi F, Venturini M, Donati C, Bruni P, Pedata F, Pugliese AM. A 2 B Adenosine Receptors and Sphingosine 1-Phosphate Signaling Cross-Talk in Oligodendrogliogenesis. Front Neurosci 2021; 15:677988. [PMID: 34135730 PMCID: PMC8202686 DOI: 10.3389/fnins.2021.677988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain. Impairments in the process of myelination, or demyelinating insults, might cause chronic diseases such as multiple sclerosis (MS). Under physiological conditions, remyelination is an ongoing process throughout adult life consisting in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes (OLs). During pathological events, this process fails due to unfavorable environment. Adenosine and sphingosine kinase/sphingosine 1-phosphate signaling axes (SphK/S1P) play important roles in remyelination processes. Remarkably, fingolimod (FTY720), a sphingosine analog recently approved for MS treatment, plays important roles in OPC maturation. We recently demonstrated that the selective stimulation of A2 B adenosine receptors (A2 B Rs) inhibit OPC differentiation in vitro and reduce voltage-dependent outward K+ currents (I K ) necessary to OPC maturation, whereas specific SphK1 or SphK2 inhibition exerts the opposite effect. During OPC differentiation A2 B R expression increases, this effect being prevented by SphK1/2 blockade. Furthermore, selective silencing of A2 B R in OPC cultures prompts maturation and, intriguingly, enhances the expression of S1P lyase, the enzyme responsible for irreversible S1P catabolism. Finally, the existence of an interplay between SphK1/S1P pathway and A2 B Rs in OPCs was confirmed since acute stimulation of A2 B Rs activates SphK1 by increasing its phosphorylation. Here the role of A2 B R and SphK/S1P signaling during oligodendrogenesis is reviewed in detail, with the purpose to shed new light on the interaction between A2 B Rs and S1P signaling, as eventual innovative targets for the treatment of demyelinating disorders.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Liu Y, Chu S, Hu Y, Yang S, Li X, Zheng Q, Ai Q, Ren S, Wang H, Gong L, Xu X, Chen NH. Exogenous Adenosine Antagonizes Excitatory Amino Acid Toxicity in Primary Astrocytes. Cell Mol Neurobiol 2021; 41:687-704. [PMID: 32632892 DOI: 10.1007/s10571-020-00876-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
Abstract
Excitatory toxicity is still a hot topic in the study of ischemic stroke, and related research has focused mainly on neurons. Adenosine is an important neuromodulator that is known as a "biosignature" in the central nervous system (CNS). The protective effect of exogenous adenosine on neurons has been confirmed, but its mechanism remains elusive. In this study, astrocytes were pretreated with adenosine, and the effects of an A2a receptor (A2aR) inhibitor (SCH58261) and A2b receptor (A2bR) inhibitor (PSB1115) on excitatory glutamate were investigated. An oxygen glucose deprivation/reoxygenation (OGD/R) and glutamate model was generated in vitro. Post-model assessment included expression levels of glutamate transporters (glt-1), gap junction protein (Cx43) and glutamate receptor (AMPAR), Na+-K+-ATPase activity, and diffusion distance of dyes. Glutamate and glutamine contents were determined at different time points. The results showed that (1) adenosine could improve the function of Na+-K+-ATPase, upregulate the expression of glt-1, and enhance the synthesis of glutamine in astrocytes. This effect was associated with A2aR activation but not with A2bR activation. (2) Adenosine could inhibit the expression of gap junction protein (Cx43) and reduce glutamate diffusion. Inhibition of A2aR attenuated adenosine inhibition of gap junction intercellular communication (GJIC) in the OGD/R model, while it enhanced adenosine inhibition of GJIC in the glutamate model, depending on the glutamate concentration. (3) Adenosine could cause AMPAR gradually entered the nucleus from the cytoplasm, thereby reducing the expression of AMPAR on the cell membrane. Taken together, the results indicate that adenosine plays a role of anti-excitatory toxicity effect in protection against neuronal death and the functional recovery of ischemic stroke mainly by targeting astrocytes, which are closely related to A2aR. The present study provided a scientific basis for adenosine prevention and ischemic stroke treatment, thereby providing a new approach for alleviating ischemic stroke.
Collapse
Affiliation(s)
- Yingjiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yaomei Hu
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Songwei Yang
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qinglian Zheng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Qidi Ai
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Siyu Ren
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Huiqin Wang
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Limin Gong
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Xin Xu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Nai-Hong Chen
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
12
|
Coppi E, Dettori I, Cherchi F, Bulli I, Venturini M, Pedata F, Pugliese AM. New Insight into the Role of Adenosine in Demyelination, Stroke and Neuropathic Pain. Front Pharmacol 2021; 11:625662. [PMID: 33584309 PMCID: PMC7878385 DOI: 10.3389/fphar.2020.625662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Cherchi F, Pugliese AM, Coppi E. Oligodendrocyte precursor cell maturation: role of adenosine receptors. Neural Regen Res 2021; 16:1686-1692. [PMID: 33510056 PMCID: PMC8328763 DOI: 10.4103/1673-5374.306058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain and their degeneration leads to demyelinating diseases such as multiple sclerosis. Remyelination requires the differentiation of oligodendrocyte progenitor cells into mature oligodendrocytes but, in chronic neurodegenerative disorders, remyelination fails due to adverse environment. Therefore, a strategy to prompt oligodendrocyte progenitor cell differentiation towards myelinating oligodendrocytes is required. The neuromodulator adenosine, and its receptors (A1, A2A, A2B and A3 receptors: A1R, A2AR, A2BR and A3R), are crucial mediators in remyelination processes. It is known that A1Rs facilitate oligodendrocyte progenitor cell maturation and migration whereas the A3Rs initiates apoptosis in oligodendrocyte progenitor cells. Our group of research contributed to the field by demonstrating that A2AR and A2BR inhibit oligodendrocyte progenitor cell maturation by reducing voltage-dependent K+ currents necessary for cell differentiation. The present review summarizes the possible role of adenosine receptor ligands as potential therapeutic targets in demyelinating pathologies such as multiple sclerosis.
Collapse
Affiliation(s)
- Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
14
|
Coppi E, Dettori I, Cherchi F, Bulli I, Venturini M, Lana D, Giovannini MG, Pedata F, Pugliese AM. A 2B Adenosine Receptors: When Outsiders May Become an Attractive Target to Treat Brain Ischemia or Demyelination. Int J Mol Sci 2020; 21:E9697. [PMID: 33353217 PMCID: PMC7766015 DOI: 10.3390/ijms21249697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine is a signaling molecule, which, by activating its receptors, acts as an important player after cerebral ischemia. Here, we review data in the literature describing A2BR-mediated effects in models of cerebral ischemia obtained in vivo by the occlusion of the middle cerebral artery (MCAo) or in vitro by oxygen-glucose deprivation (OGD) in hippocampal slices. Adenosine plays an apparently contradictory role in this receptor subtype depending on whether it is activated on neuro-glial cells or peripheral blood vessels and/or inflammatory cells after ischemia. Indeed, A2BRs participate in the early glutamate-mediated excitotoxicity responsible for neuronal and synaptic loss in the CA1 hippocampus. On the contrary, later after ischemia, the same receptors have a protective role in tissue damage and functional impairments, reducing inflammatory cell infiltration and neuroinflammation by central and/or peripheral mechanisms. Of note, demyelination following brain ischemia, or autoimmune neuroinflammatory reactions, are also profoundly affected by A2BRs since they are expressed by oligodendroglia where their activation inhibits cell maturation and expression of myelin-related proteins. In conclusion, data in the literature indicate the A2BRs as putative therapeutic targets for the still unmet treatment of stroke or demyelinating diseases.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| |
Collapse
|
15
|
Martins RS, Rombo DM, Gonçalves-Ribeiro J, Meneses C, Borges-Martins VPP, Ribeiro JA, Vaz SH, Kubrusly RCC, Sebastião AM. Caffeine has a dual influence on NMDA receptor-mediated glutamatergic transmission at the hippocampus. Purinergic Signal 2020; 16:503-518. [PMID: 33025424 DOI: 10.1007/s11302-020-09724-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Caffeine, a stimulant largely consumed around the world, is a non-selective adenosine receptor antagonist, and therefore caffeine actions at synapses usually, but not always, mirror those of adenosine. Importantly, different adenosine receptors with opposing regulatory actions co-exist at synapses. Through both inhibitory and excitatory high-affinity receptors (A1R and A2R, respectively), adenosine affects NMDA receptor (NMDAR) function at the hippocampus, but surprisingly, there is a lack of knowledge on the effects of caffeine upon this ionotropic glutamatergic receptor deeply involved in both positive (plasticity) and negative (excitotoxicity) synaptic actions. We thus aimed to elucidate the effects of caffeine upon NMDAR-mediated excitatory post-synaptic currents (NMDAR-EPSCs), and its implications upon neuronal Ca2+ homeostasis. We found that caffeine (30-200 μM) facilitates NMDAR-EPSCs on pyramidal CA1 neurons from Balbc/ByJ male mice, an action mimicked, as well as occluded, by 1,3-dipropyl-cyclopentylxantine (DPCPX, 50 nM), thus likely mediated by blockade of inhibitory A1Rs. This action of caffeine cannot be attributed to a pre-synaptic facilitation of transmission because caffeine even increased paired-pulse facilitation of NMDA-EPSCs, indicative of an inhibition of neurotransmitter release. Adenosine A2ARs are involved in this likely pre-synaptic action since the effect of caffeine was mimicked by the A2AR antagonist, SCH58261 (50 nM). Furthermore, caffeine increased the frequency of Ca2+ transients in neuronal cell culture, an action mimicked by the A1R antagonist, DPCPX, and prevented by NMDAR blockade with AP5 (50 μM). Altogether, these results show for the first time an influence of caffeine on NMDA receptor activity at the hippocampus, with impact in neuronal Ca2+ homeostasis.
Collapse
Affiliation(s)
- Robertta S Martins
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Laboratório de Neurofarmacologia, Departamento de Fisiologia e Farmacologia, Pós-Graduação em Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Diogo M Rombo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Carlos Meneses
- Área Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores, Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal
| | - Vladimir P P Borges-Martins
- Laboratório de Neurofarmacologia, Departamento de Fisiologia e Farmacologia, Pós-Graduação em Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Regina C C Kubrusly
- Laboratório de Neurofarmacologia, Departamento de Fisiologia e Farmacologia, Pós-Graduação em Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal. .,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
16
|
Coppi E, Cherchi F, Fusco I, Dettori I, Gaviano L, Magni G, Catarzi D, Colotta V, Varano F, Rossi F, Bernacchioni C, Donati C, Bruni P, Pedata F, Cencetti F, Pugliese AM. Adenosine A 2B receptors inhibit K + currents and cell differentiation in cultured oligodendrocyte precursor cells and modulate sphingosine-1-phosphate signaling pathway. Biochem Pharmacol 2020; 177:113956. [PMID: 32251679 DOI: 10.1016/j.bcp.2020.113956] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/01/2020] [Indexed: 12/29/2022]
Abstract
Oligodendrocytes are the only myelinating cells in the brain and differentiate from their progenitors (OPCs) throughout adult life. However, this process fails in demyelinating pathologies. Adenosine is emerging as an important player in OPC differentiation and we recently demonstrated that adenosine A2A receptors inhibit cell maturation by reducing voltage-dependent K+ currents. No data are available to date about the A2B receptor (A2BR) subtype. The bioactive lipid mediator sphingosine-1-phosphate (S1P) and its receptors (S1P1-5) are also crucial modulators of OPC development. An interaction between this pathway and the A2BR is reported in peripheral cells. We studied the role of A2BRs in modulating K+ currents and cell differentiation in OPC cultures and we investigated a possible interplay with S1P signaling. Our data indicate that the A2BR agonist BAY60-6583 and its new analogue P453 inhibit K+ currents in cultured OPC and the effect was prevented by the A2BR antagonist MRS1706, by K+ channel blockers and was differently modulated by the S1P analogue FTY720-P. An acute (10 min) exposure of OPCs to BAY60-6583 also increased the phosphorylated form of sphingosine kinase 1 (SphK1). A chronic (7 days) treatment with the same agonist decreased OPC differentiation whereas SphK1/2 inhibition exerted the opposite effect. Furthermore, A2BR was overexpressed during OPC differentiation, an effect prevented by the pan SphK1/2 inhibitor VPC69047. Finally, A2BR silenced cells showed increased cell maturation, decreased SphK1 expression and enhanced S1P lyase levels. We conclude that A2BRs inhibit K+ currents and cell differentiation and positively modulate S1P synthesis in cultured OPCs.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Italy.
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Italy
| | - Irene Fusco
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Italy
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Italy
| | - Lisa Gaviano
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Italy
| | - Giada Magni
- Istituto di Fisica Applicata, CNR, Via Madonna del Piano 10, Sesto Fiorentino 50019, Florence, Italy
| | - Daniela Catarzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Vittoria Colotta
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Flavia Varano
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Francesca Rossi
- Istituto di Fisica Applicata, CNR, Via Madonna del Piano 10, Sesto Fiorentino 50019, Florence, Italy
| | - Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Italy
| |
Collapse
|
17
|
Catarzi D, Varano F, Varani K, Vincenzi F, Pasquini S, Dal Ben D, Volpini R, Colotta V. Amino-3,5-Dicyanopyridines Targeting the Adenosine Receptors Ranging from Pan Ligands to Combined A 1/A 2B Partial Agonists. Pharmaceuticals (Basel) 2019; 12:ph12040159. [PMID: 31652622 PMCID: PMC6958422 DOI: 10.3390/ph12040159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
The amino-3,5-dicyanopyridine derivatives belong to an intriguing series of adenosine receptor (AR) ligands that has been developed by both academic researchers and industry. Indeed, the studies carried out to date underline the versatility of the dicyanopyridine scaffold to obtain AR ligands with not only a wide range of affinities but also with diverse degrees of efficacies at the different ARs. These observations prompted us to investigate on the structure-activity relationships (SARs) of this series leading to important previously reported results. The present SAR study has helped to confirm the 1H-imidazol-2-yl group at R2 position as an important feature for producing potent AR agonists. Moreover, the nature of the R1 substituent highly affects not only affinity/activity at the hA1 and hA2B ARs but also selectivity versus the other subtypes. Potent hA1 and hA2B AR ligands were developed, and among them, the 2-amino-6-[(1H-imidazol-2-ylmethyl)sulfanyl]-4-[4-(prop-2-en-1-yloxy)phenyl]pyridine-3,5-dicarbonitrile (3) is active in the low nanomolar range at these subtypes and shows a good trend of selectivity versus both the hA2A and hA3 ARs. This combined hA1/hA2B partial agonist activity leads to a synergistic effect on glucose homeostasis and could potentially be beneficial in treating diabetes and related complications.
Collapse
Affiliation(s)
- Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy.
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy.
| | - Katia Varani
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy.
| | - Fabrizio Vincenzi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy.
| | - Silvia Pasquini
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy.
| | - Diego Dal Ben
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S.Agostino 1, 62032 Camerino (MC); Italy.
| | - Rosaria Volpini
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S.Agostino 1, 62032 Camerino (MC); Italy.
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
18
|
Engel T, Sperlagh B. Purinergic signaling as a target for emerging neurotherapeutics. Brain Res Bull 2019; 151:1-2. [PMID: 31163189 DOI: 10.1016/j.brainresbull.2019.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|