1
|
Cao J, Ji L, Zhan Y, Shao X, Xu P, Wu B, Chen P, Cheng L, Zhuang X, Ou Y, Hua F, Sun L, Li F, Chen H, Zhou Z, Cheng Y. MST4 kinase regulates immune thrombocytopenia by phosphorylating STAT1-mediated M1 polarization of macrophages. Cell Mol Immunol 2023; 20:1413-1427. [PMID: 37833401 PMCID: PMC10687271 DOI: 10.1038/s41423-023-01089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Primary immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disorder in which macrophages play a critical role. Mammalian sterile-20-like kinase 4 (MST4), a member of the germinal-center kinase STE20 family, has been demonstrated to be a regulator of inflammation. Whether MST4 participates in the macrophage-dependent inflammation of ITP remains elusive. The expression and function of MST4 in macrophages of ITP patients and THP-1 cells, and of a macrophage-specific Mst4-/- (Mst4ΔM/ΔM) ITP mouse model were determined. Macrophage phagocytic assays, RNA sequencing (RNA-seq) analysis, immunofluorescence analysis, coimmunoprecipitation (co-IP), mass spectrometry (MS), bioinformatics analysis, and phosphoproteomics analysis were performed to reveal the underlying mechanisms. The expression levels of the MST4 gene were elevated in the expanded M1-like macrophages of ITP patients, and this elevated expression of MST4 was restored to basal levels in patients with remission after high-dose dexamethasone treatment. The expression of the MST4 gene was significantly elevated in THP-1-derived M1 macrophages. Silencing of MST4 decreased the expression of M1 macrophage markers and cytokines, and impaired phagocytosis, which could be increased by overexpression of MST4. In a passive ITP mouse model, macrophage-specific depletion of Mst4 reduced the numbers of M1 macrophages in the spleen and peritoneal lavage fluid, attenuated the expression of M1 cytokines, and promoted the predominance of FcγRIIb in splenic macrophages, which resulted in amelioration of thrombocytopenia. Downregulation of MST4 directly inhibited STAT1 phosphorylation, which is essential for M1 polarization of macrophages. Our study elucidates a critical role for MST4 kinase in the pathology of ITP and identifies MST4 kinase as a potential therapeutic target for refractory ITP.
Collapse
Affiliation(s)
- Jingjing Cao
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lili Ji
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xia Shao
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Pengcheng Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Boting Wu
- Department of Transfusion Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Pu Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Luya Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xibing Zhuang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yang Ou
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Fanli Hua
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China
| | - Lihua Sun
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China
| | - Feng Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China
| | - Hao Chen
- Department of Thoracic Surgery, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Yunfeng Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China.
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Getu AA, Zhou M, Cheng SY, Tan M. The mammalian Sterile 20-like kinase 4 (MST4) signaling in tumor progression: Implications for therapy. Cancer Lett 2023; 563:216183. [PMID: 37094736 PMCID: PMC10642761 DOI: 10.1016/j.canlet.2023.216183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Cancer is a leading cause of death in humans, with a complex and dynamic nature that makes it challenging to fully comprehend and treat. The Mammalian Sterile 20-Like Kinase 4 (MST4 or STK26) is a serine/threonine-protein kinase that plays a crucial role in cell migration and polarity in both normal and tumor cells via activation of intracellular signaling molecules and pathways. MST4 is involved in tumor cell proliferation, migration and invasion, epithelial-mesenchymal transition (EMT), survival, and cancer metastasis through modulation of downstream signaling pathways including the extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) pathways. Additionally, MST4 interacts with programmed cell death 10 (PDCD10) to promote tumor proliferation and migration. MST4 phosphorylates autophagy related 4B cysteine peptidase (ATG4B) to mediate autophagy signaling, promote tumor cell survival and proliferation, and contribute to treatment resistance. Taken together, MST4 functions as an oncogene and is a promising therapeutic target which deserves further exploration.
Collapse
Affiliation(s)
- Ayechew A Getu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ming Tan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Institute of Biochemistry & Molecular Biology, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
3
|
Mahlapuu M, Caputo M, Xia Y, Cansby E. GCKIII kinases in lipotoxicity: Roles in NAFLD and beyond. Hepatol Commun 2022; 6:2613-2622. [PMID: 35641240 PMCID: PMC9512487 DOI: 10.1002/hep4.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is defined by excessive accumulation of lipid droplets within hepatocytes. The STE20-type kinases comprising the germinal center kinase III (GCKIII) subfamily - MST3, MST4, and STK25 - decorate intrahepatocellular lipid droplets and have recently emerged as critical regulators of the initiation and progression of NAFLD. While significant advancement has been made toward deciphering the role of GCKIII kinases in hepatic fat accumulation (i.e., steatosis) as well as the aggravation of NAFLD into its severe form nonalcoholic steatohepatitis (NASH), much remains to be resolved. This review provides a brief overview of the recent studies in patient cohorts, cultured human cells, and mouse models, which have characterized the function of MST3, MST4, and STK25 in the regulation of hepatic lipid accretion, meta-inflammation, and associated cell damage in the context of NAFLD/NASH. We also highlight the conflicting data and emphasize future research directions that are needed to advance our understanding of GCKIII kinases as potential targets in the therapy of NAFLD and its comorbidities. Conclusions: Several lines of evidence suggest that GCKIII proteins govern the susceptibility to hepatic lipotoxicity and that pharmacological inhibition of these kinases could mitigate NAFLD development and aggravation. Comprehensive characterization of the molecular mode-of-action of MST3, MST4, and STK25 in hepatocytes as well as extrahepatic tissues is important, especially in relation to their impact on carcinogenesis, to fully understand the efficacy as well as safety of GCKIII antagonism.
Collapse
Affiliation(s)
- Margit Mahlapuu
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Mara Caputo
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Ying Xia
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
4
|
Liu W, Ma Z, Wu Y, Yuan C, Zhang Y, Liang Z, Yang Y, Zhang W, Jiao P. MST4 negatively regulates type I interferons production via targeting MAVS-mediated pathway. Cell Commun Signal 2022; 20:103. [PMID: 35820905 PMCID: PMC9274187 DOI: 10.1186/s12964-022-00922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytosolic RNA sensing can elicit immune responses against viral pathogens. However, antiviral responses must be tightly regulated to avoid the uncontrolled production of type I interferons (IFN) that might have deleterious effects on the host. Upon bacterial infection, the germinal center kinase MST4 can directly phosphorylate the adaptor TRAF6 to limit the inflammatory responses, thereby avoiding the damage caused by excessive immune activation. However, the molecular mechanism of how MST4 regulates virus-mediated type I IFN production remains unknown. METHODS The expression levels of IFN-β, IFIT1, and IFIT2 mRNA were determined by RT-PCR. The expression levels of p-IRF3, IRF3, RIG-I, MAVS, and MST4 proteins were determined by Western blot. The effect of secreted level of IFN-β was measured by ELISA. The relationship between MST4 and MAVS was investigated by immunofluorescence staining and coimmunoprecipitation. RESULTS In this study, we reported that MST4 can act as a negative regulator of type I IFN production. Ectopic expression of MST4 suppressed the Poly (I:C) (polyino-sinic-polycytidylic acid)- and Sendai virus (SeV)-triggered production of type I IFN, while the knockdown of MST4 enhanced the production of type I IFN. Mechanistically, upon SeV infection, the MST4 competed with TRAF3 to bind to the 360-540 domain of MAVS, thereby inhibiting the TRAF3/MAVS association. Additionally, MST4 facilitated the interaction between the E3 ubiquitin ligase Smurf1 and MAVS. This promoted the K48-linked ubiquitination of MAVS, thereby accelerating the ubiquitin-mediated proteasome degradation of MAVS. CONCLUSIONS Our findings showed that MST4 acted as a crucial negative regulator of RLR-mediated type I IFN production. Video Abstract.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yaru Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanyan Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zeyang Liang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yu Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenwen Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengtao Jiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Dong XL, Wang YH, Xu J, Zhang N. The protective effect of the PDE-4 inhibitor rolipram on intracerebral haemorrhage is associated with the cAMP/AMPK/SIRT1 pathway. Sci Rep 2021; 11:19737. [PMID: 34611179 PMCID: PMC8492710 DOI: 10.1038/s41598-021-98743-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Rolipram specifically inhibits phosphodiesterase (PDE) 4, thereby preventing inactivation of the intracellular second messenger cyclic adenosine monophosphate (cAMP). Rolipram has been shown to play a neuroprotective role in some central nervous system (CNS) diseases. However, the role of PDE4 and the potential protective effect of rolipram on the pathophysiological process of intracerebral haemorrhage (ICH) are still not entirely clear. In this study, a mouse model of ICH was established by the collagenase method. Rolipram reduced brain oedema, blood–brain barrier (BBB) leakage, neuronal apoptosis and inflammatory cytokine release and improved neurological function in our mouse model of ICH. Moreover, rolipram increased the levels of cAMP and silent information regulator 1 (SIRT1) and upregulated the phosphorylation of AMP-activated protein kinase (AMPK). Furthermore, these effects of rolipram could be reversed by the SIRT1 inhibitor sirtinol. In conclusion, rolipram can play a neuroprotective role in the pathological process of ICH by activating the cAMP/AMPK/SIRT1 pathway.
Collapse
Affiliation(s)
- Xiao-Liu Dong
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurorehabilitation, Tangshan People's Hospital, Tangshan, 063000, China
| | - Yan-Hui Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jing Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
6
|
Zhang Y, Luan D, Liu Y, Li H, Dong J, Zhang X, Yuan L, Zhong Z, Jiang L, Li X, Ye M, Tong J. Helicid Reverses Lipopolysaccharide-Induced Inflammation and Promotes GDNF Levels in C6 Glioma Cells through Modulation of Prepronociceptin. Chem Biodivers 2020; 17:e2000063. [PMID: 32329965 DOI: 10.1002/cbdv.202000063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Abstract
Helicid suppresses inflammatory factors and protects nerve cells in the hippocampus of rats with depression, but the mechanisms underlying its protective effects are unclear at present. In this investigation, we conducted gene silencing, Helicid intervention and rescue experiments to explore the protective actions of PNOC, the prepronociceptin gene known to regulate inflammatory processes, and Helicid on a C6 cell model of inflammation induced by LPS. Collective data from Western blots, ELISA, immunofluorescence and flow cytometry experiments showed that PNOC silencing or administration of Helicid led to reduced inflammatory factor levels, oxidative stress and expression of glial fibrillary acidic protein (GFAP), along with increased glial cell lines-derived neurotrophic factor (GDNF) expression. Furthermore, expression of p-Akt in the Akt signaling pathway was increased. Interestingly, overexpression of PNOC in the Helicid treatment group partially reversed the Helicid-induced changes in the above biochemical indexes. Our collective results provide strong evidence of Helicid-mediated regulation of the Akt signaling pathway through PNOC to improve cell inflammation and oxidative stress.
Collapse
Affiliation(s)
| | - Di Luan
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, P. R. China
| | - Yanhao Liu
- Wannan Medical College, Wuhu, 241000, P. R. China
| | - Hongjin Li
- Wannan Medical College, Wuhu, 241000, P. R. China
| | - Jian Dong
- Wannan Medical College, Wuhu, 241000, P. R. China
| | | | - Lili Yuan
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, P. R. China
| | - Zhengling Zhong
- Department of Clinical Pharmacy, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, P. R. China
| | - Lan Jiang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, P. R. China
| | - Xuyi Li
- China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Mingquan Ye
- Wannan Medical College, Wuhu, 241000, P. R. China
| | - Jiucui Tong
- Wannan Medical College, Wuhu, 241000, P. R. China.,Department of Clinical Pharmacy, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, P. R. China
| |
Collapse
|