1
|
Farhadi M, Afarinesh MR, Sheibani V, Sabzalizadeh M. Effects of enriched environment on barrel cortex and hippocampus function following somatosensory damage in rat. Physiol Behav 2025; 291:114785. [PMID: 39710130 DOI: 10.1016/j.physbeh.2024.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/04/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES This study investigated the effects of environmental enrichment (EE) on the behavior and histological alterations of rats with barrel cortex damage. METHODS Forty-eight adult male rats were divided into Control (Ctrl), Lesion, Lesion+EE.S (Lesion+Standard Enriched Environment, and Lesion+EE.T (Lesion+Tactile Enriched Environment) groups. The animals were first anesthetized, and then, a cold lesion model was performed on the parietal cortex. After surgery, the rats were exposed to a standard enriched environment or enriched environment with tactile for 30 days. Their cognitive behaviors were assessed using an open field, novel texture discrimination, and Morris water maze (MWM) tests. In addition, a histological investigation was conducted to determine the degree of degeneration of hippocampal and somatosensory cortex neurons. RESULTS The results demonstrated that rats with barrel cortex lesions revealed impairments in novel texture discrimination and MWM tests (P<0.001). Moreover, lesions increased neuronal degeneration in rats' barrel cortex and hippocampus (P< 0.001). Environmental enrichment improved behavioral deficits and decreased neuronal degeneration in the barrel cortex and hippocampus of rats with barrel cortex lesions (P<0.05). CONCLUSION The current study suggests that barrel cortex lesions create cognitive and behavioral deficits and neural degeneration in the barrel cortex and hippocampus; however, environmental enrichment could reverse these impairments.
Collapse
Affiliation(s)
- Melika Farhadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mansoureh Sabzalizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Hayashi Y, Alamir N, Sun G, Tamagnini F, Hayashi Y, Williams C, Zheng Y. An effective textured Novel Object Recognition Test (tNORT) for repeated measure of whisker sensitivity of rodents. Behav Brain Res 2024; 472:115153. [PMID: 39025432 DOI: 10.1016/j.bbr.2024.115153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Rodents use their whisker system to discriminate surface texture. Whisker-based texture discrimination tasks are often used to investigate the mechanisms encoding tactile sensation. One such task is the textured Novel Object Recognition Test (tNORT). It takes advantage of a tendency of rodents to explore novel objects more than familiar ones and assesses the sensitivity of whiskers in discriminating different textures of objects. It requires little training of the animals and the equipment involved is a simple arena with typically two objects placed inside. The success of the test relies on rodents spending sufficient time exploring these objects. Animals may lose interests in such tasks when performed repetitively within a limited time frame. However, such repeated tests may be crucial when establishing a sensitivity threshold of the whisker system. Here we present an adapted rodent tNORT protocol designed to maintain sustained interest in the objects even with repeated testing. We constructed complex objects from three simple-shaped objects. Different textures were provided by sandpapers of varying grit sizes. To minimise olfactory clues, we used the sandy and the laminar side of the same sandpaper as the familiar and novel textures assigned at random. We subsequently conducted repeated tNORTs on eight rats in order to identify a critical threshold of the sandpaper grit size below which rats would be unable to discriminate the sandy from the laminar side. With an inter-test-interval of seven days and after five tNORTs, the protocol enabled us to successfully identify the threshold. We suggest that the proposed tNORT is a useful tool for investigating the sensitivity threshold of the whisker system of rodent, and for testing the effectiveness of an intervention by comparing sensitivity threshold pre- and post-intervention.
Collapse
Affiliation(s)
- Yurie Hayashi
- School of Biological Sciences, Whiteknights, University of Reading, Reading RG6 7AY, UK
| | - Najeeba Alamir
- School of Biological Sciences, Whiteknights, University of Reading, Reading RG6 7AY, UK
| | - Guoyang Sun
- School of Biological Sciences, Whiteknights, University of Reading, Reading RG6 7AY, UK
| | - Francesco Tamagnini
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6LA, UK; Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading RG6 6AL, UK
| | - Yoshikatsu Hayashi
- School of Biological Sciences, Whiteknights, University of Reading, Reading RG6 7AY, UK
| | - Claire Williams
- Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading RG6 6AL, UK; School of Psychology and Clinical Language Science, Whiteknights, University of Reading, Reading RG6 6AL, UK
| | - Ying Zheng
- School of Biological Sciences, Whiteknights, University of Reading, Reading RG6 7AY, UK; Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading RG6 6AL, UK.
| |
Collapse
|
3
|
Derakhshani A, Taheri F, Geraminia N, Mohammadipoor-ghasemabad L, Sabzalizadeh M, Vafee F, Afarinesh MR, Sheibani V. Amelioration of behavioral and histological impairments in somatosensory cortex injury rats by limbal mesenchymal stem cell transplantation. Transl Neurosci 2024; 15:20220346. [PMID: 39156044 PMCID: PMC11330157 DOI: 10.1515/tnsci-2022-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Cortical lesions can cause major sensory and motor impairments, representing a significant challenge in neuroscience and clinical medicine. Limbal mesenchymal stem cells (LMSCs), renowned for their remarkable ability to proliferate and distinct characteristics within the corneal epithelium, offer a promising opportunity for regenerative treatments. This study aimed to assess whether the transplantation of LMSCs could improve tactile ability in rats with lesions of the barrel cortex. Methods In this experimental study, we divided 21 rats into three groups: a control group, a lesion group with cortical cold lesion induction but no stem cell treatment, and a group receiving LMSC transplantation following cold lesion induction. We conducted 3-week sensory assessments using a texture discrimination test and an open-field test. We also performed Nissl staining to assess changes on the cellular level. Results Rats in the LMSC transplantation group demonstrated significant improvements in their ability to discrimination textures during the second and third weeks compared to those in the lesion group. The open-field test results showed an increased exploratory behavior of rats in the LMSC transplantation group by the third week compared to the lesion group. Additionally, Nissl staining revealed cellular alterations in the damaged cortex, with a significant distinction observed between rats in the LMSCs and lesion group. Conclusion The findings suggest that LMSC transplantation enhances sensory recovery in rats with cortical lesions, particularly their ability to discriminate textures. LMSC transplantation benefits brain tissue reparation after a cold lesion on the somatosensory cortex.
Collapse
Affiliation(s)
- Ali Derakhshani
- Hydatid Disease Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Farahnaz Taheri
- Neurology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nima Geraminia
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, P. O. Box: 76198-13159, Kerman, Iran
| | - Lily Mohammadipoor-ghasemabad
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, P. O. Box: 76198-13159, Kerman, Iran
| | - Mansoureh Sabzalizadeh
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, P. O. Box: 76198-13159, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Vafee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Afarinesh
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, P. O. Box: 76198-13159, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, P. O. Box: 76198-13159, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Borgert CJ. Hypothesis-driven weight of evidence evaluation indicates styrene lacks endocrine disruption potential. Crit Rev Toxicol 2023:1-16. [PMID: 37216681 DOI: 10.1080/10408444.2022.2112652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 05/24/2023]
Abstract
Styrene is among the U.S. EPA's List 2 chemicals for Tier 1 endocrine screening subject to the agency's two-tiered Endocrine Disruptor Screening Program (EDSP). Both U.S. EPA and OECD guidelines require a Weight of Evidence (WoE) to evaluate a chemical's potential for disrupting the endocrine system. Styrene was evaluated for its potential to disrupt estrogen, androgen, thyroid, and steroidogenic (EATS) pathways using a rigorous WoE methodology that included problem formulation, systematic literature search and selection, data quality evaluation, relevance weighting of endpoint data, and application of specific interpretive criteria. Sufficient data were available to assess the endocrine disruptive potential of styrene based on endpoints that would respond to EATS modes of action in some Tier 1-type and many Tier 2-type reproductive, developmental, and repeat dose toxicity studies. Responses to styrene were inconsistent with patterns of responses expected for chemicals and hormones known to operate via EATS MoAs, and thus, styrene cannot be deemed an endocrine disruptor, a potential endocrine disruptor, or to exhibit endocrine disruptive properties. Because Tier 1 EDSP screening results would trigger Tier 2 studies, like those evaluated here, subjecting styrene to further endocrine screening would produce no additional useful information and would be unjustified from animal welfare perspectives.
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology and Toxicology Inc, Gainesville, FL, USA
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| |
Collapse
|
5
|
Dehghani A, Pourjafari F, Koohkan F, Haghpanh T, Pourjafari F, Sheibani V, Afarinesh MR. L-carnitine attenuates acoustic startle reflex dysfunction in adult male rats exposed to mancozeb. Toxicol Ind Health 2023; 39:115-126. [PMID: 36650049 DOI: 10.1177/07482337231151739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The fungicide mancozeb increases oxygen-free radicals in the central nervous system. As an antioxidant, L-carnitine protects DNA and cell membranes from damage caused by oxygen-free radicals. The present study investigated how L-carnitine affected the acoustic startle response (ASR) in rats exposed to mancozeb. In this experimental study, male Wistar rats were gavaged orally with mancozeb (500, 1000, and 2000 mg/kg), L-carnitine (100, 200, and 400 mg/kg), or L-carnitine (200 mg/kg) + mancozeb (500 mg/kg) three times in 1 week. In the sham group, saline (0.9%, 10 mL/kg) was gavaged at a volume equivalent to that of the drugs. The control group did not receive any treatment. The results showed that locomotor activity and the percentage of prepulse inhibition in the mancozeb groups decreased compared to the sham group while these parameters increased in the L-carnitine group (200 mg/kg) compared to sham rats. In conclusion, mancozeb may increase the risk factor for cognitive diseases such as schizophrenia in people exposed to it while pretreatment with L-carnitine can attenuate the toxic effect.
Collapse
Affiliation(s)
- Ali Dehghani
- Department of Medical Genetics, Faculty of Medical Sciences, 48503Tarbiat Modares University, Tehran, Iran
| | - Farimah Pourjafari
- Department of Biology, Faculty of Science, 196469University of Bojnord, Bojnord, Iran
| | - Faeze Koohkan
- Neuroscience Research Center, Institute of Neuropharmacology48463Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanh
- Anatomical Sciences Department, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Pourjafari
- Anatomical Sciences Department, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology48463Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmacology48463Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Taheri M, Afarinesh MR, Meftahi GH, Karimi A, Haghpanah T. Levothyroxine therapy attenuates anxiety-like states induced by mild chronically of neonatal hypothyroidism in both male and female rats. TOXIN REV 2021. [DOI: 10.1080/15569543.2020.1741642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mahdieh Taheri
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of biology, Payame Noor University, Tehran, Iran
| | - Mohammad Reza Afarinesh
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Akbar Karimi
- Department of biology, Payame Noor University, Tehran, Iran
| | - Tahereh Haghpanah
- Department of anatomy, School of medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Sabzalizadeh M, Afarinesh MR, Esmaeili-Mahani S, Farsinejad A, Derakhshani A, Arabzadeh E, Sheibani V. Transplantation of rat dental pulp stem cells facilities post-lesion recovery in the somatosensory whisker cortex of male Wistar rats. Brain Res Bull 2021; 173:150-161. [PMID: 33964348 DOI: 10.1016/j.brainresbull.2021.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022]
Abstract
Damage to somatosensory "barrel" cortex reduces the rats' behavioral sensitivity in discrimination of tactile stimuli. Here, we examined how transplantation of stem cells into the lesioned barrel cortex can help in recovery of sensory capacities. We induced mechanical lesions in the right barrel cortex area of male rats. Three days after lesioning, rats received one of three transplantation types: un-differentiated dental pulp stem cells (U-DPSCs) or differentiated dental pulp stem cells (D-DPSCs), or cell medium (vehicle). A fourth group of rats were control without any Surgery. For 4 consecutive weeks, starting one week after transplantation, we evaluated the rats' preference to explore novel textures as a measure of sensory discrimination ability, also measured the expression of glial fibrillary acidic protein (GFAP), Olig 2, nestin, neuronal nuclei (NeuN), brain-derived neurotrophic factor (BDNF) and neuroligin1 by immunohistochemistry and western blotting. Unilateral mechanical lesion decreased the rats' preferential exploration of novel textures compared to the control group across the 4-week behavioral tests. Following stem cell therapy, the rats' performance significantly improved at week 2-4 compared to the vehicle group. Compared to the control group, there was a significant decrease in the expression of nestin, NeuN, Olig 2, BDNF, neuroligin1 and a significant increase in the expression of GFAP in the vehicle group. The expression of the neural markers was significantly higher in DPSCs compared with the vehicle group whereas GFAP level was lower in DPSCs compared to vehicle. We found that DPSCs therapy affected a range of neuronal markers in the barrel cortex post lesion, and improved the rats' recovery for sensory discrimination.
Collapse
Affiliation(s)
- Mansoureh Sabzalizadeh
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Alireza Farsinejad
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Derakhshani
- Hydatid Disease Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Arabzadeh
- Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Sabzalizadeh M, Afarinesh MR, Esmaeili-Mahani S, Sheibani V. Focal unilateral mechanical lesion in barrel cortex impairs rat’s abilities to discriminate textures. Somatosens Mot Res 2020; 38:1-10. [DOI: 10.1080/08990220.2020.1828055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mansoureh Sabzalizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|