1
|
Zheng J, Zhou Y, Zhang D, Ma K, Gong Y, Luo X, Liu J, Cui S. Intestinal melatonin levels and gut microbiota homeostasis are independent of the pineal gland in pigs. Front Microbiol 2024; 15:1352586. [PMID: 38596375 PMCID: PMC11003461 DOI: 10.3389/fmicb.2024.1352586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/28/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Melatonin (MEL) is a crucial neuroendocrine hormone primarily produced by the pineal gland. Pinealectomy (PINX) has been performed on an endogenous MEL deficiency model to investigate the functions of pineal MEL and its relationship with various diseases. However, the effect of PINX on the gastrointestinal tract (GIT) MEL levels and gut microbiome in pigs has not been previously reported. Methods By using a newly established pig PINX model, we detected the levels of MEL in the GIT by liquid chromatography-tandem mass spectrometry. In addition, we examined the effects of PINX on the expression of MEL synthesis enzymes, intestinal histomorphology, and the intestinal barrier. Furthermore, 16S rRNA sequencing was performed to analyze the colonic microbiome. Results PINX reduced serum MEL levels but did not affect GIT MEL levels. Conversely, MEL supplementation increased MEL levels in the GIT and intestinal contents. Neither PINX nor MEL supplementation had any effect on weight gain, organ coefficient, serum biochemical indexes, or MEL synthetase arylalkylamine N-acetyltransferase (AANAT) expression in the duodenum, ileum, and colon. Furthermore, no significant differences were observed in the intestinal morphology or intestinal mucosal barrier function due to the treatments. Additionally, 16S rRNA sequencing revealed that PINX had no significant impact on the composition of the intestinal microbiota. Nevertheless, MEL supplementation decreased the abundance of Fibrobacterota and increased the abundance of Actinobacteriota, Desulfobacterota, and Chloroflexi. Conclusion We demonstrated that synthesis of MEL in the GIT is independent of the pineal gland. PINX had no influence on intestinal MEL level and microbiota composition in pigs, while exogenous MEL alters the structure of the gut microbiota.
Collapse
Affiliation(s)
- Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yewen Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Kezhe Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuneng Gong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xuan Luo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Çalışkan H, Karakaya D, Koçak S, Ömercioğlu G, Baştuğ M. Effect of high-intensity interval training on self-care and anxiety-like behaviors in naive rats. Exp Brain Res 2024:10.1007/s00221-024-06793-z. [PMID: 38451318 DOI: 10.1007/s00221-024-06793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024]
Abstract
Self-care behavior covers individual's health, life and well-being to maintain the necessary activities. The aim of this study is to examine the self-care and possible anxiolytic effects of high-intensity interval exercise (HIIT). Eight-week-old Wistar Albino male rats were divided into Control (n = 8), and Exercise (n = 8). Rat exercised for 38 min a day, 5 days a week, for 8 weeks The animals were then subjected to open field test and splash test, and the behaviors were video recorded. Student t test and Shapiro-Wilk test were used as statistical tests. In the exercise group, spray-induced grooming behavior increased significantly in terms of duration and frequency (p < 0.05), but no significant difference was observed in the latency of grooming (p > 0.05). In the open-field test, the total distance traveled, which is a locomotor activity parameter, did not change between the groups. Anxiolytic-like behaviors such as total rearing behavior, unsupported rearing, central time, and central region entries increased remarkably in the exercise group vs. control (p < 0.0001). Freezing as an anxiogenic behavior decreased in the exercise group positively (p < 0.0001). Intermittent high-intensity exercise improved and increased self-care behaviors. Further, the present study shows that HIIT has beneficial effects on different aspects of behaviors such as exploratory behaviors, increasing anxiolytic behaviors, and reducing anxiogenic behavior. The present study is a preclinical study that will pave the way for new studies.
Collapse
Affiliation(s)
- Hasan Çalışkan
- Department of Physiology, Balıkesir University Medicine Faculty, Balıkesir, Turkey.
| | - Dilara Karakaya
- Department of Physiology, Ankara University Medicine Faculty, Ankara, Turkey
| | - Seda Koçak
- Department of Physiology, Kırşehir Ahi Evran University Medicine Faculty, Kırşehir, Turkey
| | - Göktuğ Ömercioğlu
- Department of Physiology, Ankara University Medicine Faculty, Ankara, Turkey
| | - Metin Baştuğ
- Department of Physiology, Ankara University Medicine Faculty, Ankara, Turkey
| |
Collapse
|
3
|
Liu W, Huang Z, Zhang Y, Zhang S, Cui Z, Liu W, Li L, Xia J, Zou Y, Qi Z. ASMT determines gut microbiota and increases neurobehavioral adaptability to exercise in female mice. Commun Biol 2023; 6:1126. [PMID: 37935873 PMCID: PMC10630421 DOI: 10.1038/s42003-023-05520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
N-acetylserotonin O-methyltransferase (ASMT) is responsible for melatonin biosynthesis. The Asmt gene is located on the X chromosome, and its genetic polymorphism is associated with depression in humans. However, the underlying mechanism remains unclear. Here, we use CRISPR/Cas9 to delete 20 bp of exon 2 of Asmt, and construct C57BL/6J mouse strain with Asmt frameshift mutation (Asmtft/ft). We show that female Asmtft/ft mice exhibit anxiety- and depression-like behaviors, accompanied by an obvious structural remodeling of gut microbiota. These behavioral abnormalities are not observed in male. Moreover, female Asmtft/ft mice show a lower neurobehavioral adaptability to exercise, while wild-type shows a "higher resilience". Cross-sectional and longitudinal analysis indicates that the structure of gut microbiota in Asmtft/ft mice is less affected by exercise. These results suggests that Asmt maintains the plasticity of gut microbiota in female, thereby enhancing the neurobehavioral adaptability to exercise.
Collapse
Affiliation(s)
- Weina Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China.
| | - Zhuochun Huang
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Ye Zhang
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Sen Zhang
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Zhiming Cui
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Wenbin Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Lingxia Li
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Jie Xia
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yong Zou
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
4
|
Vaseghi S, Mostafavijabbari A, Alizadeh MS, Ghaffarzadegan R, Kholghi G, Zarrindast MR. Intricate role of sleep deprivation in modulating depression: focusing on BDNF, VEGF, serotonin, cortisol, and TNF-α. Metab Brain Dis 2023; 38:195-219. [PMID: 36399239 DOI: 10.1007/s11011-022-01124-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
In this review article, we aimed to discuss intricate roles of SD in modulating depression in preclinical and clinical studies. Decades of research have shown the inconsistent effects of SD on depression, focusing on SD duration. However, inconsistent role of SD seems to be more complicated, and SD duration cannot be the only one factor. Regarding this issue, we chose some important factors involved in the effects of SD on cognitive functions and mood including brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), serotonin, cortisol, and tumor necrosis factor-alpha (TNF-α). It was concluded that SD has a wide-range of inconsistent effects on BDNF, VEGF, serotonin, and cortisol levels. It was noted that BDNF diurnal rhythm is significantly involved in the modulatory role of SD in depression. Furthermore, the important role of VEGF in blood-brain barrier permeability which is involved in modulating depression was discussed. It was also noted that there is a negative correlation between cortisol and BDNF that modulates depression. Eventually, it was concluded that TNF-α regulates sleep/wake cycle and is involved in the vulnerability to cognitive and behavioral impairments following SD. TNF-α also increases the permeability of the blood-brain barrier which is accompanied by depressive behavior. In sum, it was suggested that future studies should focus on these mechanisms/factors to better investigate the reasons behind intricate roles of SD in modulating depression.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | | | - Mohammad-Sadegh Alizadeh
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Department of Cellular and Molecular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Ghaffarzadegan
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Tchekalarova J, Nenchovska Z, Kortenska L, Uzunova V, Georgieva I, Tzoneva R. Impact of Melatonin Deficit on Emotional Status and Oxidative Stress-Induced Changes in Sphingomyelin and Cholesterol Level in Young Adult, Mature, and Aged Rats. Int J Mol Sci 2022; 23:ijms23052809. [PMID: 35269951 PMCID: PMC8911298 DOI: 10.3390/ijms23052809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
The pineal gland regulates the aging process via the hormone melatonin. The present report aims to evaluate the effect of pinealectomy (pin) on behavioral and oxidative stress-induced alterations in cholesterol and sphingomyelin (SM) levels in young adult, mature and aging rats. Sham and pin rats aged 3, 14 and 18 months were tested in behavioral tests for motor activity, anxiety, and depression. The ELISA test explored oxidative stress parameters and SM in the hippocampus, while total cholesterol was measured in serum via a commercial autoanalyzer. Mature and aged sham rats showed low motor activity and increased anxiety compared to the youngest rats. Pinealectomy affected emotional responses, induced depressive-like behavior, and elevated cholesterol levels in the youngest rats. However, removal of the pineal gland enhanced oxidative stress by diminishing antioxidant capacity and increasing the MDA level, and decreased SM level in the hippocampus of 14-month-old rats. Our findings suggest that young adult rats are vulnerable to emotional disturbance and changes in cholesterol levels resulting from melatonin deficiency. In contrast, mature rats with pinealectomy are exposed to an oxidative stress-induced decrease in SM levels in the hippocampus.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 23, 1113 Sofia, Bulgaria; (Z.N.); (L.K.)
- Correspondence:
| | - Zlatina Nenchovska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 23, 1113 Sofia, Bulgaria; (Z.N.); (L.K.)
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 23, 1113 Sofia, Bulgaria; (Z.N.); (L.K.)
| | - Veselina Uzunova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 21, 1113 Sofia, Bulgaria; (V.U.); (I.G.); (R.T.)
| | - Irina Georgieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 21, 1113 Sofia, Bulgaria; (V.U.); (I.G.); (R.T.)
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 21, 1113 Sofia, Bulgaria; (V.U.); (I.G.); (R.T.)
| |
Collapse
|
6
|
Atanasova D, Lazarov N, Stoyanov DS, Spassov RH, Tonchev AB, Tchekalarova J. Reduced neuroinflammation and enhanced neurogenesis following chronic agomelatine treatment in rats undergoing chronic constant light. Neuropharmacology 2021; 197:108706. [PMID: 34274352 DOI: 10.1016/j.neuropharm.2021.108706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Experimental studies have revealed the involvement of neuroinflammation mediated by activated microglia in the pathophysiology of depression, suggesting a novel target for treatment. The atypical antidepressant Agomelatine (Ago) has an advantage compared to the classical antidepressants due to its chronobiotic activity and unique pharmacological profile as a selective agonist at the melatonin receptors and an antagonist at the 5HT2C receptors. We have recently revealed that Ago can exert a potent antidepressant effect in rats exposed to a chronic constant light (CCL). In the present study, we hypothesized that the anti-inflammatory activity of this melatonin analog on activated neuroglia in specific brain structures might contribute to its antidepressant effect in this model. Chronic Ago treatment (40 mg/kg, i.p. for 21 days) was executed during the last 3 weeks of a 6-week period of CCL exposure in rats. The CCL-vehicle-treated rats showed a profound neuroinflammation characterized by microgliosis and astrogliosis in the hippocampus, basolateral amygdala (BL) and partly in the piriform cortex (Pir) confirmed by immunohistochemistry. With the exception of the Pir, the CCL regime was accompanied by neuronal damage, identified by Nissl staining, in the hippocampus and basolateral amygdala and impaired neurogenesis with reduced dendritic complexity of hippocampal neuroprogenitor cells detected by doublecortin-positive cells in the dentate gyrus (DG) subgranular zone compared to the control group. Ago reversed the gliosis in a region-specific manner and partially restored the suppressed DG neurogenesis. Ago failed to produce neuroprotection in CCL exposed rats. The present results suggest that the beneficial effects of Ago represent an important mechanism underlying its antidepressant effect in models characterized by impaired circadian rhythms.
Collapse
Affiliation(s)
- Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, 6003, Stara Zagora, Bulgaria
| | - Nikolai Lazarov
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria; Department of Anatomy and Histology, Medical University of Sofia, 1431, Sofia, Bulgaria
| | - Dimo S Stoyanov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University - Varna "Prof. Dr. Paraskev Stoyanov", 9002, Varna, Bulgaria
| | - Radoslav H Spassov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University - Varna "Prof. Dr. Paraskev Stoyanov", 9002, Varna, Bulgaria
| | - Anton B Tonchev
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University - Varna "Prof. Dr. Paraskev Stoyanov", 9002, Varna, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria.
| |
Collapse
|