1
|
Zhou F, Wang Z, Xiong K, Zhang M, Wang Q, Wang Y, Li X. Olfactory three needle regulates the proliferation of olfactory bulb neural stem cells and ameliorates brain injury after subarachnoid hemorrhage by regulating Wnt/β-catenin signaling. Heliyon 2024; 10:e28551. [PMID: 38596082 PMCID: PMC11002047 DOI: 10.1016/j.heliyon.2024.e28551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Background Subarachnoid hemorrhage (SAH) is a serious cerebrovascular emergency. The incidence of SAH and hazard ratio of death increase with age. Objective In this study, we aimed to observe the effects and potential mechanisms of olfactory three needle (OTN) on cognitive impairment, neuronal activity, and neural stem cell differentiation in SAH rats. Methods Sprague-Dawley (SD) rats were randomly divided into five groups: Sham, SAH group, SAH + Nimodipine (NMP) group, and SAH + OTN group. The rats in the SAH + OTN group received the OTN electroacupuncture treatment. For treatment with recombinant DKK1 (a Wnt/β-catenin inhibitor), mice were injected with DKK1. Results Our results found that OTN improved cognitive impairment and hippocampal neuron damage in SAH rats. Furthermore, OTN promoted the proliferation of neural stem cells in SAH rats. Mechanistically, OTN activated Wnt/β-catenin signaling in SAH rats, as indicated by the increased expression levels of Wnt1, β-Catenin, LMNB1, and p-GSK-3β. DKK1 reversed the improvement effect of OTN on cognitive impairment and neuronal damage in SAH rats. Meanwhile, DKK1 blocked the promoting effect of OTN on the proliferation of NSCs in SAH rats. Conclusions OTN electroacupuncture may be an effective therapeutic strategy for SAH.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Neurosurgery, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712020, China
| | - Zhenzhi Wang
- Department of Chinese and Western Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Kang Xiong
- Department of Chinese and Western Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Meiling Zhang
- Department of Chinese and Western Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Qiang Wang
- Combination of Acupuncture and Medicine Innovation Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Yuan Wang
- Combination of Acupuncture and Medicine Innovation Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Xiong Li
- Department of Chinese and Western Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| |
Collapse
|
2
|
Ma P, Huang N, Tang J, Zhou Z, Xu J, Chen Y, Zhang M, Huang Q, Cheng Y. The TRPM4 channel inhibitor 9-phenanthrol alleviates cerebral edema after traumatic brain injury in rats. Front Pharmacol 2023; 14:1098228. [PMID: 36865920 PMCID: PMC9971592 DOI: 10.3389/fphar.2023.1098228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Cerebral edema (CE) exerts an important effect on brain injury after traumatic brain injury (TBI). Upregulation of transient receptor potential melastatin 4 (TRPM4) in vascular endothelial cells (ECs) results in damage to capillaries and the blood-brain barrier (BBB), which is critical for the development of CE. Many studies have shown that 9-phenanthrol (9-PH) effectively inhibits TRPM4. The current study aimed to investigate the effect of 9-PH on reducing CE after TBI. In this experiment, we observed that 9-PH markedly reduced brain water content, BBB disruption, proliferation of microglia and astrocytes, neutrophil infiltration, neuronal apoptosis and neurobehavioral deficits. At the molecular level, 9-PH significantly inhibited the protein expression of TRPM4 and MMP-9, alleviated the expression of apoptosis-related molecules and inflammatory cytokines, such as Bax, TNF-α and IL-6, near injured tissue, and diminished serum SUR1 and TRPM4 levels. Mechanistically, treatment with 9-PH inhibited activation of the PI3K/AKT/NF-kB signaling pathway, which was reported to be involved in the expression of MMP-9. Taken together, the results of this study indicate that 9-PH effectively reduces CE and alleviates secondary brain injury partly through the following possible mechanisms: ①9-PH inhibits TRPM4-mediated Na + influx and reduces cytotoxic CE; ②9-PH hinders the expression and activity of MMP-9 by inhibiting the TRPM4 channel and decreases disruption of the BBB, thereby preventing vasogenic cerebral edema. ③9-PH reduces further inflammatory and apoptotic damage to tissues.
Collapse
Affiliation(s)
- Ping Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zunjie Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Chen
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Maoxin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Qin Huang, ; Yuan Cheng,
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Qin Huang, ; Yuan Cheng,
| |
Collapse
|
3
|
Chen J, Duan Z, Liu Y, Fu R, Zhu C. Ginsenoside Rh4 Suppresses Metastasis of Esophageal Cancer and Expression of c-Myc via Targeting the Wnt/β-Catenin Signaling Pathway. Nutrients 2022; 14:nu14153042. [PMID: 35893895 PMCID: PMC9331240 DOI: 10.3390/nu14153042] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 02/01/2023] Open
Abstract
The metastasis of esophageal squamous cell carcinoma (ESCC) is a leading cause of death worldwide, however, it has a poor prognosis. Ginsenoside Rh4 is a rare saponin that has been shown to have potential antitumor effectiveness in ESCC. However, the utility of Rh4 in ESCC metastasis and its undiscovered mode of action has not yet been explored. In this study, we found that Rh4 could inhibit ESCC metastasis by regulating the Wnt/β-catenin signaling pathway and the level of c-Myc, which is an important transcription factor in cancer. In in vitro experiments, Rh4 could inhibit the migration and invasion of ESCC cells without affecting cell viability. In in vivo experiments, Rh4 restrained ESCC metastasis to the lymph nodes and lungs via the suppression of epithelial-mesenchymal transition (EMT). The Wnt agonist HLY78 promoted EMT and migration of ESCC cells, whereas treatment of Rh4 can attenuate the promotion effect of HLY78. The siRNA knocking out c-Myc can also significantly reduce the expression of EMT-related marker proteins. This study illustrates a new concept for further research on the mechanism of Rh4 in ESCC.
Collapse
Affiliation(s)
- Jun Chen
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi’an 710069, China; (J.C.); (Z.D.); (Y.L.); (R.F.)
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi’an 710069, China; (J.C.); (Z.D.); (Y.L.); (R.F.)
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi’an 710069, China; (J.C.); (Z.D.); (Y.L.); (R.F.)
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi’an 710069, China; (J.C.); (Z.D.); (Y.L.); (R.F.)
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi’an 710069, China; (J.C.); (Z.D.); (Y.L.); (R.F.)
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi’an 710069, China
- Correspondence: ; Tel./Fax: +86-29-8830-5118
| |
Collapse
|
4
|
Activation of LRP6 with HLY78 Attenuates Oxidative Stress and Neuronal Apoptosis via GSK3β/Sirt1/PGC-1α Pathway after ICH. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7542468. [PMID: 35419167 PMCID: PMC9001077 DOI: 10.1155/2022/7542468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/14/2022]
Abstract
Background Oxidative stress and neuronal apoptosis have important roles in the pathogenesis after intracerebral hemorrhage (ICH). Previous studies have reported that low-density lipoprotein receptor-related protein 6 (LRP6) exerts neuroprotection in several neurological diseases. Herein, we investigate the role of LRP6 receptor activation with HLY78 to attenuate oxidative stress and neuronal apoptosis after ICH, as well as the underlying mechanism. Methods A total of 199 CD1 mice were used. ICH was induced via injection of autologous blood into the right basal ganglia. HLY78 was administered via intranasal injection at 1 h after ICH. To explore the underlying mechanism, LRP6 siRNA and selisistat, a Sirt1 selective antagonist, were injected intracerebroventricularly at 48 h before ICH induction. Neurobehavioral tests, Western blot, and immunofluorescence staining were performed. Results The expression of endogenous p-LRP6 was gradually increased and expressed on neurons after ICH. HLY78 significantly improved the short- and long-term neurobehavioral deficits after ICH, which was accompanied with decreased oxidative stress and neuronal apoptosis, as well as increased expression of p-GSK3β, Sirt1, and PGC-1α, as well as downregulation of Romo-1 and C-Caspase-3. LRP6 knockdown or Sirt1 inhibition abolished these effects of HLY78 after ICH. Conclusion Our results suggest that administration of HLY78 attenuated oxidative stress, neuronal apoptosis, and neurobehavioral impairments through the LRP6/GSK3β/Sirt1/PGC-1α signaling pathway after ICH.
Collapse
|
5
|
Gu L, Sun M, Li R, Zhang X, Tao Y, Yuan Y, Luo X, Xie Z. Didymin Suppresses Microglia Pyroptosis and Neuroinflammation Through the Asc/Caspase-1/GSDMD Pathway Following Experimental Intracerebral Hemorrhage. Front Immunol 2022; 13:810582. [PMID: 35154128 PMCID: PMC8828494 DOI: 10.3389/fimmu.2022.810582] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation has been proven to exert an important effect on brain injury after intracerebral hemorrhage (ICH). Previous studies reported that Didymin possessed anti-inflammatory properties after acute hepatic injury, hyperglycemia-induced endothelial dysfunction, and death. However, the role of Didymin in microglial pyroptosis and neuroinflammation after ICH is unclear. The current study aimed to investigate the effect of Didymin on neuroinflammation mediated by microglial pyroptosis in mouse models of ICH and shed some light on the underlying mechanisms. In this study, we observed that Didymin treatment remarkably improved neurobehavioral performance and decreased BBB disruption and brain water content. Microglial activation and neutrophil infiltration in the peri-hematoma tissue after ICH were strikingly mitigated by Didymin as well. At the molecular level, administration of Didymin significantly unregulated the expression of Rkip and downregulated the expression of pyroptotic molecules and inflammatory cytokines such as Nlrp3 inflammasome, GSDMD, caspase-1, and mature IL-1β, TNF-α, and MPO after ICH. Besides, Didymin treatment decreased the number of Caspase-1-positive microglia and GSDMD-positive microglia after ICH. Inversely, Locostatin, an Rkip-specific inhibitor, significantly abolished the anti-pyroptosis and anti-neuroinflammation effects of Didymin. Moreover, Rkip binding with Asc could interrupt the activation and assembly of the inflammasome. Mechanistically, inhibition of Caspase-1 by VX-765 attenuated brain injury and suppressed microglial pyroptosis and neuroinflammation by downregulation of GSDMD, mature IL-1β, TNF-α, and MPO based on Locostatin-treated ICH. Taken together, Didymin alleviated microglial pyroptosis and neuroinflammation, at least in part through the Asc/Caspase-1/GSDMD pathway via upregulating Rkip expression after ICH. Therefore, Didymin may be a potential agent to attenuate neuroinflammation via its anti-pyroptosis effect after ICH.
Collapse
Affiliation(s)
- Lingui Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mingjiang Sun
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ruihao Li
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xingyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xu Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Ni K, Zhu J, Xu X, Liu Y, Yang S, Huang Y, Xu R, Jiang L, Zhang J, Zhang W, Ma Z. Hippocampal Activated Microglia May Contribute to Blood–Brain Barrier Impairment and Cognitive Dysfunction in Post-Traumatic Stress Disorder-Like Rats. J Mol Neurosci 2022; 72:975-982. [PMID: 35167061 PMCID: PMC8852956 DOI: 10.1007/s12031-022-01981-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 12/20/2022]
Abstract
Post-traumatic stress disorder (PTSD)-associated cognitive dysfunction significantly disturbs patients’ quality of life and will to live. However, its underlying mechanism is as yet unknown. Recent researches indicate that blood–brain barrier (BBB) breakdown is responsible for early cognitive dysfunction. Microglia might participate in remodeling of BBB-associated tight junction and regulating BBB integrity. Nevertheless, it is unclear whether microglia activation and BBB injury involve in PTSD-associated cognitive dysfunction. Hence, we established an animal model of PTSD, single prolonged stress (SPS), and investigated permeability changes in the hippocampus and further explored the effects of microglia on BBB remodeling. The Y maze was used to assess the changes of cognitive function. The sodium fluorescein (NaFlu) assay and western blotting analysis were employed to detect BBB integrity changes. Minocycline was administered to inhibit microglial activation. Immunofluorescence stains were used to assess the activation states in microglia. The results showed that SPS-exposed rats exhibited poorer cognitive performance, higher passage of NaFlu, and lower expression of tight junction proteins (occludin and claudin 5) in the hippocampus on the day after SPS, but no difference on the 7th day. Inhibition of microglial activation by minocycline attenuated poor cognitive performance and BBB impairment including the extravasation of NaFlu and protein levels of the tight junction. Taken together, the present study indicates that BBB impairment may underlie the shared pathological basis of PTSD and cognitive dysfunction. Microglial activation may involve in BBB remodeling at the early stage of SPS.
Collapse
Affiliation(s)
- Kun Ni
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jixiang Zhu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xuan Xu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yue Liu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Shuai Yang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yulin Huang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Rui Xu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Li Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Juan Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Wei Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Zhengliang Ma
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
7
|
Yuan Q, Zhang X, Wei W, Zhao J, Wu Y, Zhao S, Zhu L, Wang P, Hao J. Lycorine improves peripheral nerve function by promoting Schwann cell autophagy via AMPK pathway activation and MMP9 downregulation in diabetic peripheral neuropathy. Pharmacol Res 2022; 175:105985. [PMID: 34863821 DOI: 10.1016/j.phrs.2021.105985] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus and no effective therapy is approved. Here, lycorine, a natural alkaloid, was identified as a potential drug for DPN by the bioinformatics analysis of GEO datasets and Connectivity Map database. Lycorine administration improved peripheral nerve function and autophagy-associated proteins of diabetic mice. Again, in vitro high glucose-cultured rat Schwann cells (RSC96) showed enhanced autophagosome marker LC3-II with the treatment of lycorine. Additionally, beclin-1 and Atg3 were decreased in high glucose-stimulated RSC96 cells, which were reversed by lycorine treatment. Furthermore, DPN-associated differentially expressed genes (DEGs) from GEO datasets and lycorine-drug targets from PubChem and PharmMapper were visually analyzed and revealed that MMP9 was both DPN-associated DEGs and lycorine-drug target. Functional enrichment analysis of MMP9-relevant genes showed that cell energy metabolism was involved. Moreover, lycorine reduced high glucose-enhanced MMP9 expression in RSC96 cells. Overexpression of MMP9 attenuated lycorine-induced the expression of beclin-1, Atg3 and LC3-II in high glucose-cultured RSC96 cells. In addition, AMPK pathway activation was confirmed in lycorine-treated high glucose-cultured RSC96 cells. Then AMPK pathway inhibition attenuated lycorine-reduced MMP9 expression in high glucose-treated RSC96 cells. Molecular docking analysis revealed that lycorine bound the domain of AMPK containing Thr 172 site, which affected AMPK (Thr 172) phosphorylation. Finally, AMPK pathway activation and MMP9 downregulation were also revealed in the sciatic nerves of diabetic mice administrated with lycorine. Taken together, lycorine was advised to promote Schwann cell autophagy via AMPK pathway activation and MMP9 downregulation-induced LC3-II transformation in diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Qingqing Yuan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Xiang Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Wandi Wei
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Jialing Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Yuhao Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Peiran Wang
- Beijing 21st Century International School, Beijing, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
8
|
Sharma HS, Lafuente JV, Feng L, Muresanu DF, Menon PK, Castellani RJ, Nozari A, Sahib S, Tian ZR, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A. Methamphetamine exacerbates pathophysiology of traumatic brain injury at high altitude. Neuroprotective effects of nanodelivery of a potent antioxidant compound H-290/51. PROGRESS IN BRAIN RESEARCH 2021; 266:123-193. [PMID: 34689858 DOI: 10.1016/bs.pbr.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel are often exposed to high altitude (HA, ca. 4500-5000m) for combat operations associated with neurological dysfunctions. HA is a severe stressful situation and people frequently use methamphetamine (METH) or other psychostimulants to cope stress. Since military personnel are prone to different kinds of traumatic brain injury (TBI), in this review we discuss possible effects of METH on concussive head injury (CHI) at HA based on our own observations. METH exposure at HA exacerbates pathophysiology of CHI as compared to normobaric laboratory environment comparable to sea level. Increased blood-brain barrier (BBB) breakdown, edema formation and reductions in the cerebral blood flow (CBF) following CHI were exacerbated by METH intoxication at HA. Damage to cerebral microvasculature and expression of beta catenin was also exacerbated following CHI in METH treated group at HA. TiO2-nanowired delivery of H-290/51 (150mg/kg, i.p.), a potent chain-breaking antioxidant significantly enhanced CBF and reduced BBB breakdown, edema formation, beta catenin expression and brain pathology in METH exposed rats after CHI at HA. These observations are the first to point out that METH exposure in CHI exacerbated brain pathology at HA and this appears to be related with greater production of oxidative stress induced brain pathology, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Wang Y, Pan XF, Liu GD, Liu ZH, Zhang C, Chen T, Wang YH. FGF-2 suppresses neuronal autophagy by regulating the PI3K/Akt pathway in subarachnoid hemorrhage. Brain Res Bull 2021; 173:132-140. [PMID: 34023434 DOI: 10.1016/j.brainresbull.2021.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
The degree of early brain injury (EBI) is a significant factor that affects the prognosis of patients with subarachnoid hemorrhage (SAH). Evidence has shown that fibroblast growth factor-2 (FGF-2) may alleviate the serious consequences of EBI after SAH. The objective of the current study was to investigate the underlying mechanism that mediates the neuroprotective effects of FGF-2 in the SAH rat model. Sprague-Dawley (SD) rats that underwent different treatments were divided into various groups. FGF-2 was administered intranasally to rats in the treatment group within 30 min after modeling. Rapamycin (an autophagy activator) or LY294002 (a PI3K/Akt pathway inhibitor) was administered intracerebroventricularly (i.c.v.) 30 min before modeling. Neurological scale and brain water content were measured in the brain tissue of the rats. TUNEL staining, Western blot, and immunofluorescence staining were performed to examine and compare the diverse effects of FGF-2 treatment, activated autophagy, and inhibited the PI3K/Akt pathway. We found that FGF-2 treatment effectively reduced the number of TUNEL-positive cells, decreased the brain water content, and improved the neurological function of rats after SAH. Additionally, the expression levels of autophagy-related proteins (LC3 and Beclin-1) were obviously decreased in the FGF-2 treatment group compared with the SAH + vehicle group. The therapeutic effects of FGF-2 in the SAH + FGF-2+rapamycin group were weakened compared with that in the SAH + FGF-2+DMSO group. In the event of the PI3K/Akt pathway inhibition, the expression levels of LC3 and Beclin-1 were enhanced, and the therapeutic effects of FGF-2 were compromised. In summary, our data collectively demonstrated that FGF-2 may suppress autophagy levels to play a neuroprotective role, at least partially by activating the PI3K/Akt pathway. These results highlight FGF-2 as a promising solution to the clinical intervention of SAH.
Collapse
Affiliation(s)
- Yue Wang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China
| | - Xiao-Fei Pan
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China
| | - Guo-Dong Liu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China
| | - Zhuang-Hua Liu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China
| | - Can Zhang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China
| | - Tao Chen
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China.
| | - Yu-Hai Wang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China.
| |
Collapse
|