1
|
Hu W, Luo J, Li H, Luo Y, Zhang X, Wu Z, Yang Q, Zhao S, Hu B, Zou X. Identification of Key Genes in Esketamine's Therapeutic Effects on Perioperative Neurocognitive Disorders via Transcriptome Sequencing. Drug Des Devel Ther 2025; 19:981-1000. [PMID: 39974608 PMCID: PMC11836629 DOI: 10.2147/dddt.s510752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
Background Esketamine ameliorates propofol-induced brain damage and cognitive impairment in mice. However, the precise role and underlying mechanism of esketamine in perioperative neurocognitive disorders (PND) remain unclear. Therefore, this study aimed to investigate the key genes associated with the role of esketamine in PND through animal modeling and transcriptome sequencing. Methods The present study established a mice model of PND and administered esketamine intervention to the model, and mice were divided into control, surgical group, and surgical group with esketamine. Behavioral assessments were conducted using the Morris water maze and Y maze paradigms, while transcriptome sequencing was performed on hippocampal samples obtained from 3 groups. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were performed on sequencing data to identify candidate genes related to esketamine treating PND. Thereafter, protein-protein interaction (PPI) network analysis was implemented to select key genes. The genes obtained from each step were subjected to enrichment analysis, and a regulatory network for key genes was constructed. Results The Morris water maze and Y maze findings demonstrated the successful construction of our PND model, and indicated that esketamine exhibits a certain therapeutic efficacy for PND. Ank1, Cbln4, L1cam, Gap43, and Shh were designated as key genes for subsequent analysis. The 5 key genes were significantly enriched in cholesterol biosynthesis, nonsense mediated decay (NMD), formation of a pool of free 40s subunits, major pathway of rRNA processing in the nucleolus and cytosol, among others. Notably, the miRNAs, mmu-mir-155-5p and mmu-mir-1a-3p, functionally co-regulated the expression of Ank1, Gap43, and L1cam. Conclusion We uncovered the therapeutic efficacy of esketamine in treating PND and identified 5 key genes (Ank1, Cbln4, L1cam, Gap43, and Shh) that contribute to its therapeutic effects, providing a valuable reference for further mechanistic studies on esketamine's treatment of PND.
Collapse
Affiliation(s)
- Wen Hu
- Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Jieqiong Luo
- Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Hui Li
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Yushan Luo
- Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Xiaoyuan Zhang
- Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Zhen Wu
- Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Qian Yang
- Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Sirun Zhao
- Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Bailong Hu
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Xiaohua Zou
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| |
Collapse
|
2
|
Wang J, Tang Y, Guo C, Du Z, Chen F, Fang S, Tang Y. Epigallocatechin gallate mitigates the motor deficits in a rotenone-induced Parkinson's disease rat model via promoting protein kinase D1 and inhibiting neuronal Parthanatos. Transl Neurosci 2025; 16:20250366. [PMID: 40026710 PMCID: PMC11868712 DOI: 10.1515/tnsci-2025-0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/05/2025] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Parkinson's disease (PD), a neurodegenerative disorder characterized by degeneration of the dopaminergic (DA) neurons, is still lack of available treatments to completely block neurodegeneration. (-)-Epigallocatechin-3-gallate (EGCG), a predominant active polyphenol generated from green tea, exerts multiple neuroprotective roles in the nervous system. However, the function role of EGCG in PD and the underlying mechanism remains to be investigated. In the current study, we used the rotenone injection to build the PD rat model, followed by the EGCG treatment and determined by the behavior tests, measurements of malondialdehyde, glutathione, and superoxide dismutase levels, and enzyme-linked immunosorbent assay. We revealed that, in PD rats, EGCG upregulates protein kinase D1 (PKD1) and inhibits Parthanatos to ameliorate the impaired motor function, reduce the expression of tyrosine hydroxylase, suppress the oxidative stress, and suppress the inflammation in substantia nigra. These combined results suggest that EGCG can suppress oxidative stress and inflammation to prevent DA neuron degeneration to prevent rotenone-induced motor impairments, laying the foundation for EGCG to be a novel candidate for the treatment of PD.
Collapse
Affiliation(s)
- Jianjun Wang
- Affiliated Hospital, Xiangnan University, Chenzhou, 423000, Hunan, China
- Department of Clinical, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Yaqi Tang
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Chenwu Guo
- Affiliated Hospital, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Zekun Du
- Department of Clinical, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Fen Chen
- Department of Pharmacy, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Shujuan Fang
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Yinjuan Tang
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan, China
| |
Collapse
|
3
|
Li L, Xu H, Hu Z, Li L. Artemisinin ameliorates thyroid function and complications in adult male hypothyroid rats via upregulation of the L1 cell adhesion molecule. Thyroid Res 2024; 17:19. [PMID: 39155377 PMCID: PMC11331813 DOI: 10.1186/s13044-024-00206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Hypothyroidism, a common worldwide syndrome caused by insufficient thyroid hormone secretion, affects number of people at different ages. Artemisinin (ART), a well-known effective agent in the treatment of malaria, also has anti-oxidative stress functions in various diseases. The L1 cell adhesion molecule exerts multiple protective roles in diseased systems. The aim of the present study was to evaluate the role of ART in adult male hypothyroid rats and the underlying mechanisms. METHODS The propylthiouracil (PTU) rat model was treated with or without 5 mg/kg ART and with or without L1 short-interfering RNA (siRNA), followed by the experiments to determine the effect of ART on thyroid function, depression and anxiety, cognition impairments, liver, kidney and heart functions, and oxidative stress. RESULTS In the current study, it was shown that ART can ameliorate thyroid function, mitigate depression and anxiety symptoms, attenuate cognition impairments, improve liver, kidney and heart functions, and inhibit oxidative stress; however, the effects exerted by ART could not be observed when L1 was silenced by L1 siRNA. CONCLUSION These results indicated that ART can upregulate the L1 cell adhesion molecule to ameliorate thyroid function and the complications in adult male hypothyroid rats, laying the foundation for ART to be a novel strategy for the treatment of hypothyroidism.
Collapse
Affiliation(s)
- Lingling Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University Of SouthChina, Hengyang, Hunan, 421001, China
| | - Haifan Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University Of SouthChina, Hengyang, Hunan, 421001, China
| | - Zecheng Hu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University Of SouthChina, Hengyang, Hunan, 421001, China
| | - Li Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Nagaraj V, Kim R, Martianou T, Kurian S, Nayak A, Patel M, Schachner M, Theis T. Effects of L1 adhesion molecule agonistic mimetics on signal transduction in neuronal functions. Biochem Biophys Res Commun 2023; 642:27-34. [PMID: 36543021 DOI: 10.1016/j.bbrc.2022.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
The L1 cell adhesion molecule plays an essential role in neural development and repair. It is not only a 'lock and key' recognition molecule, but an important signal transducer that stimulates regenerative-beneficial cellular functions such as neurite outgrowth, neuronal cell migration, survival, myelination, and synapse formation. Triggering L1 functions after neurotrauma improves functional recovery. In addition, loss-of-function mutations in the L1 gene lead to the L1 syndrome, a rare, X-linked neurodevelopmental disorder with an incidence of approximately 1:30,000 in newborn males. To use L1 for beneficial functions, we screened small compound libraries for L1 agonistic mimetics that trigger L1 functions and improve conditions in animal models of neurotrauma and the L1 syndrome. To understand the mechanisms underlying these functions, it is important to gain a better understanding of L1-dependent cellular signaling that is triggered by the L1 agonistic mimetics. We tested the cell signaling features of L1 agonistic mimetics that contribute to neurite outgrowth and neuronal migration. Our findings indicates that L1 agonistic mimetics trigger the same cell signaling pathways underlying neurite outgrowth, but only the L1 mimetics tacrine, polydatin, trimebutine and honokiol trigger neuronal migration. In contrast, the mimetics crotamiton and duloxetine did not affect neuronal migration, thus limiting their use in increasing neuronal migration, leaving open the question of whether this is a desired or not desired feature in the adult.
Collapse
Affiliation(s)
- Vini Nagaraj
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Roy Kim
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Talia Martianou
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shyam Kurian
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Orthopaedic Surgery, Johns Hopkins Hospital, Baltimore, MD, 21287, USA
| | - Ashana Nayak
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Mukti Patel
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| | - Thomas Theis
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
5
|
The Interactions of the 70 kDa Fragment of Cell Adhesion Molecule L1 with Topoisomerase 1, Peroxisome Proliferator-Activated Receptor γ and NADH Dehydrogenase (Ubiquinone) Flavoprotein 2 Are Involved in Gene Expression and Neuronal L1-Dependent Functions. Int J Mol Sci 2023; 24:ijms24032097. [PMID: 36768419 PMCID: PMC9916828 DOI: 10.3390/ijms24032097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The cell adhesion molecule L1 is essential not only for neural development, but also for synaptic functions and regeneration after trauma in adulthood. Abnormalities in L1 functions cause developmental and degenerative disorders. L1's functions critically depend on proteolysis which underlies dynamic cell interactions and signal transduction. We showed that a 70 kDa fragment (L1-70) supports mitochondrial functions and gene transcription. To gain further insights into L1-70's functions, we investigated several binding partners. Here we show that L1-70 interacts with topoisomerase 1 (TOP1), peroxisome proliferator-activated receptor γ (PPARγ) and NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2). TOP1, PPARγ and NDUFV2 siRNAs reduced L1-dependent neurite outgrowth, and the topoisomerase inhibitors topotecan and irinotecan inhibited L1-dependent neurite outgrowth, neuronal survival and migration. In cultured neurons, L1 siRNA reduces the expression levels of the long autism genes neurexin-1 (Nrxn1) and neuroligin-1 (Nlgn1) and of the mitochondrially encoded gene NADH:ubiquinone oxidoreductase core subunit 2 (ND2). In mutant mice lacking L1-70, Nrxn1 and Nlgn1, but not ND2, mRNA levels are reduced. Since L1-70's interactions with TOP1, PPARγ and NDUFV2 contribute to the expression of two essential long autism genes and regulate important neuronal functions, we propose that L1 may not only ameliorate neurological problems, but also psychiatric dysfunctions.
Collapse
|
6
|
Chen SX, Xiao ZJ, Xie M, Chang YQ, Zhou GJ, Wen HM, He DQ, Xu CL, Chen YR, Li YH. Treatment of radiation-induced brain injury with bisdemethoxycurcumin. Neural Regen Res 2023; 18:416-421. [PMID: 35900439 PMCID: PMC9396486 DOI: 10.4103/1673-5374.346549] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Radiation therapy is considered the most effective non-surgical treatment for brain tumors. However, there are no available treatments for radiation-induced brain injury. Bisdemethoxycurcumin (BDMC) is a demethoxy derivative of curcumin that has anti-proliferative, anti-inflammatory, and anti-oxidant properties. To determine whether BDMC has the potential to treat radiation-induced brain injury, in this study, we established a rat model of radiation-induced brain injury by administering a single 30-Gy vertical dose of irradiation to the whole brain, followed by intraperitoneal injection of 500 μL of a 100 mg/kg BDMC solution every day for 5 successive weeks. Our results showed that BDMC increased the body weight of rats with radiation-induced brain injury, improved learning and memory, attenuated brain edema, inhibited astrocyte activation, and reduced oxidative stress. These findings suggest that BDMC protects against radiation-induced brain injury.
Collapse
|
7
|
Nikolaeva NS, Yandulova EY, Aleksandrova YR, Starikov AS, Neganova ME. The Role of a Pathological Interaction between β-amyloid and Mitochondria in the Occurrence and Development of Alzheimer's Disease. Acta Naturae 2022; 14:19-34. [PMID: 36348714 PMCID: PMC9611857 DOI: 10.32607/actanaturae.11723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in existence. It is characterized by an impaired cognitive function that is due to a progressive loss of neurons in the brain. Extracellular β-amyloid (Aβ) plaques are the main pathological features of the disease. In addition to abnormal protein aggregation, increased mitochondrial fragmentation, altered expression of the genes involved in mitochondrial biogenesis, disruptions in the ER-mitochondria interaction, and mitophagy are observed. Reactive oxygen species are known to affect Aβ expression and aggregation. In turn, oligomeric and aggregated Aβ cause mitochondrial disorders. In this review, we summarize available knowledge about the pathological effects of Aβ on mitochondria and the potential molecular targets associated with proteinopathy and mitochondrial dysfunction for the pharmacological treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- N. S. Nikolaeva
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - E. Yu. Yandulova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - Yu. R. Aleksandrova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - A. S. Starikov
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - M. E. Neganova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| |
Collapse
|
8
|
Wang J, Yin J, Zheng X. Artemisinin upregulates neural cell adhesion molecule L1 to attenuate neurological deficits after intracerebral hemorrhage in mice. Brain Behav 2022; 12:e2558. [PMID: 35349764 PMCID: PMC9120716 DOI: 10.1002/brb3.2558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/29/2022] [Accepted: 03/05/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Intracerebral hemorrhage (ICH) is a subtype of stroke and results in neurological deficits in patients without any effective treatments. Artemisinin (ART), a well-known antimalarial Chinese medicine, exerts multiple essential roles in the central and peripheral nervous system due to its antioxidative and anti-inflammation properties. Neural cell adhesion molecule L1 (L1CAM, L1) is considered to be implicated in neural development, functional maintenance, and neuroprotection during disease. However, whether these two essential molecules are neuroprotective in ICH remains unclear. METHODS Therefore, the present study investigated the influence of ART on the recovery of neurological deficits in a mouse model of ICH induced by collagenase and the underlying mechanism. RESULTS It was revealed that ART is capable of upregulating L1 expression to alleviate brain edema, reduce oxidative stress, and inhibit inflammation to alleviate ICH-induced brain injury to improve the neurological outcome in mice suffering from ICH. CONCLUSION These results may lay the foundation for ART to be a novel candidate treatment for ICH.
Collapse
Affiliation(s)
- Jianjiang Wang
- Department of Neurosurgery, General Hospital of Xinjiang Military Region, Urumqi, China
| | - Jie Yin
- Department of Neurosurgery, General Hospital of Xinjiang Military Region, Urumqi, China
| | - Xi Zheng
- Department of Neurosurgery, General Hospital of Xinjiang Military Region, Urumqi, China
| |
Collapse
|
9
|
Hu J, Lin SL, Schachner M. A fragment of cell adhesion molecule L1 reduces amyloid-β plaques in a mouse model of Alzheimer's disease. Cell Death Dis 2022; 13:48. [PMID: 35013124 PMCID: PMC8748658 DOI: 10.1038/s41419-021-04348-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/02/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023]
Abstract
Deposition of amyloid-β (Aβ) in the brain is one of the important histopathological features of Alzheimer's disease (AD). Previously, we reported a correlation between cell adhesion molecule L1 (L1) expression and the occurrence of AD, but its relationship was unclear. Here, we report that the expression of L1 and a 70 kDa cleavage product of L1 (L1-70) was reduced in the hippocampus of AD (APPswe) mice. Interestingly, upregulation of L1-70 expression in the hippocampus of 18-month-old APPswe mice, by parabiosis involving the joining of the circulatory system of an 18-month-old APPswe mouse with a 2-month-old wild-type C57BL/6 mouse, reduced amyloid plaque deposition. Furthermore, the reduction was accompanied by the appearance of a high number of activated microglia. Mechanistically, we observed that L1-70 could combine with topoisomerase 1 (Top1) to form a complex, L1-70/Top1, that was able to regulate expression of macrophage migration inhibitory factor (MIF), resulting in the activation of microglia and reduction of Aβ plaques. Also, transforming growth factor β1 (TGFβ-1) transferred from the blood of young wild-type C57BL/6 mice to the aged AD mice, was identified as a circulating factor that induces full-length L1 and L1-70 expression. All together, these findings suggest that L1-70 contributes to the clearance of Aβ in AD, thereby adding a novel perspective in understanding AD pathogenesis.
Collapse
Affiliation(s)
- Junkai Hu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China
| | - Stanley Li Lin
- Deaprtment of Cell Biology, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
10
|
Chen S, Wu L, He B, Zhou G, Xu Y, Zhu G, Xie J, Chen S, Yao L, Huang J, Wu H, Xiao Z. Artemisinin Facilitates Motor Function Recovery by Enhancing Motoneuronal Survival and Axonal Remyelination in Rats Following Brachial Plexus Root Avulsion. ACS Chem Neurosci 2021; 12:3148-3156. [PMID: 34465091 DOI: 10.1021/acschemneuro.1c00120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Artemisinin (ART), a well-known antimalarial medicine originally isolated from the plant Artemisia annua, exerts neuroprotective effects in the nervous system owing to an antioxidant effect. Here, we determined whether ART is capable of inhibiting the oxidative stress to enhance motoneuronal (MN) survival to promote motor function recovery of rats following brachial plexus root avulsion (BPRA) with reimplantation surgery. Rats following BPRA and reimplantation were subcutaneously injected with 500 μL of PBS or 16 mg/mL ART once daily for 7 days after surgery. Terzis grooming test (TGT), histochemical staining, real-time polymerase chain reaction, and Western blot were conducted to determine the recovery of motor function of the upper limb, the survival rate of MNs, the oxidative stress levels in the ventral horn of the spinal cord, the morphology of abnormal musculocutaneous nerve fibers, the remyelination of axons in musculocutaneous nerves, and the degree of bicep atrophy. ART significantly increased TGT score, improved the survival of MNs, inhibited the oxidative stress, ameliorated the abnormal morphology of fibers in the musculocutaneous nerve, promoted the remyelination of axons, and alleviated muscle atrophy. Take together, ART can improve the survival of MNs and axonal remyelination to promote the motor function recovery via inhibiting oxidative stress, suggesting that ART may represent a new approach to the therapy of spinal root avulsion.
Collapse
Affiliation(s)
- Shuangxi Chen
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lin Wu
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Bing He
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Guijuan Zhou
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yan Xu
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Guanghua Zhu
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Juan Xie
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shuangqin Chen
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lan Yao
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jianghua Huang
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Heng Wu
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zijian Xiao
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
11
|
Wang Y, Chen S, Tan J, Gao Y, Yan H, Liu Y, Yi S, Xiao Z, Wu H. Tryptophan in the diet ameliorates motor deficits in a rotenone-induced rat Parkinson's disease model via activating the aromatic hydrocarbon receptor pathway. Brain Behav 2021; 11:e2226. [PMID: 34105899 PMCID: PMC8413809 DOI: 10.1002/brb3.2226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/12/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD), a common neurodegenerative disorder with motor and nonmotor symptoms, does not have effective treatments. Dietary tryptophan (Trp) supplementation has potential benefits for the treatment of multiple disorders. However, whether additional Trp in the diet could be beneficial for PD remains to beinvestigated. In the present study, the neuroprotective role of dietary Trp on a rotenone-induced rat model of PD was determined. METHODS The rotenone was injected to build the PD model, and then the rats were treated with Trp in the diet. And then, an open field test, western blot analysis, and enzyme linked immunosorbent assay (ELISA) were performed. RESULTS We observed that dietary Trp significantly ameliorated impaired motor function, upregulated tyrosine hydroxylase expression, inhibited the nuclear transport of Nuclear factor-kappa B (NF-κB) in substantia nigra (SN), and downregulated the protein levels of IL-1β, IL-6, and TNF-α in serum in rotenone-treated rats. However, these patterns were reversed in response to treatment with ampicillin, an agent that can clean intestinal Trp metabolism flora. Moreover, after using CH223191, an inhibitor of the aromatic hydrocarbon receptor (AhR) pathway, dietary Trp could not exert neuroprotective roles in the rotenone-induced rat model of PD. CONCLUSION These results suggest that Trp in the diet can protect against rotenone-induced neurotoxicity to ameliorate motor deficits, which may be mediated through activating AhR pathway.
Collapse
Affiliation(s)
- Yilin Wang
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China.,Affiliated Nanhua Hospital, University of South China, Hengyang, PR China
| | - Shuangxi Chen
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China
| | - Jian Tan
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China
| | - Yijiang Gao
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China
| | - Hongye Yan
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China
| | - Yao Liu
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China
| | - Shanqing Yi
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China
| | - Zijian Xiao
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China
| | - Heng Wu
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China
| |
Collapse
|
12
|
Huang Z, Yan Q, Wang Y, Zou Q, Li J, Liu Z, Cai Z. Role of Mitochondrial Dysfunction in the Pathology of Amyloid-β. J Alzheimers Dis 2021; 78:505-514. [PMID: 33044180 DOI: 10.3233/jad-200519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction has been widely reported in several neurodegenerative disorders, including in the brains of patients with Alzheimer's disease (AD), Parkinson's disease, and Huntington disease. An increasing number of studies have implicated altered glucose and energy metabolism in patients with AD. There is compelling evidence of abnormalities in some of the key mitochondrial enzymes involved in glucose metabolism, including the pyruvate dehydrogenase and α-ketoglutarate dehydrogenase complexes, which play a great significance role in the pathogenesis of AD. Changes in some of the enzyme activities of the mitochondria found in AD have been linked with the pathology of amyloid-β (Aβ). This review highlights the role of mitochondrial function in the production and clearance of Aβ and how the pathology of Aβ leads to a decrease in energy metabolism by affecting mitochondrial function.
Collapse
Affiliation(s)
- Zhenting Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, Chongqing, China
| | - Qian Yan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, Chongqing, China.,Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yangyang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, Chongqing, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, Chongqing, China
| | - Jing Li
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, Chongqing, China
| | - Zhou Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang, Guangdong, China
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, Chongqing, China
| |
Collapse
|
13
|
Wang J, Kuang X, Peng Z, Li C, Guo C, Fu X, Wu J, Luo Y, Rao X, Zhou X, Huang B, Tang W, Tang Y. EGCG treats ICH via up-regulating miR-137-3p and inhibiting Parthanatos. Transl Neurosci 2020; 11:371-379. [PMID: 33335777 PMCID: PMC7718614 DOI: 10.1515/tnsci-2020-0143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Intracranial hemorrhage (ICH) causes high mortality and disability without effective treatment in the clinical setting. (-)-Epigallocatechin-3-gallate (EGCG) exerts an essential role in the central nervous system and offers a promising therapeutic agent for the treatment of oxidative damage-related diseases. MiR-137 can inhibit the oxidative stress and apoptosis to attenuate neuronal injury. However, the role of EGCG in regulating miR-137-3p and neuronal Parthanatos remains to be unclear. In the present study, we build the ICH mice model to investigate the antioxidant effects of EGCG via upregulating miR-137-3p and inhibiting neuronal Parthanatos. We revealed that EGCG upregulated miR-137-3p and inhibited neuronal Parthanatos, and promoted the functional recovery, alleviated ICH-induced brain injury, and reduced oxidative stress in mice following ICH. However, following the inhibition of miR-137-3p and activation of Parthanatos, EGCG was unable to exert neuroprotective roles. These combined results suggest that EGCG may upregulate miR-137-3p and inhibit neuronal Parthanatos to accelerate functional recovery in mice after ICH, laying the foundation for EGCG to be a novel strategy for the treatment of neuronal injuries related to Parthanatos.
Collapse
Affiliation(s)
- Jianjun Wang
- Affiliated hospital, Xiangnan University, Chenzhou, 423000, Hunan Province, China
- Department of Clinical, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Xuejun Kuang
- Affiliated hospital, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Zhao Peng
- Affiliated hospital, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Conghui Li
- Affiliated hospital, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Chengwu Guo
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Xi Fu
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Junhong Wu
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Yang Luo
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Xiaolin Rao
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Xiangjuan Zhou
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Bin Huang
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Weijun Tang
- Department of Pharmacy, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Yinjuan Tang
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| |
Collapse
|
14
|
Xu C, Xiao Z, Wu H, Zhou G, He D, Chang Y, Li Y, Wang G, Xie M. BDMC protects AD in vitro via AMPK and SIRT1. Transl Neurosci 2020; 11:319-327. [PMID: 33335771 PMCID: PMC7712110 DOI: 10.1515/tnsci-2020-0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023] Open
Abstract
Background Alzheimer’s disease (AD) is a common neurodegenerative disorder without any satisfactory therapeutic approaches. AD is mainly characterized by the deposition of β-amyloid protein (Aβ) and extensive neuronal cell death. Curcumin, with anti-oxidative stress (OS) and cell apoptosis properties, plays essential roles in AD. However, whether bisdemethoxycurcumin (BDMC), a derivative of curcumin, can exert a neuroprotective effect in AD remains to be elucidated. Methods In this study, SK-N-SH cells were used to establish an in vitro model to investigate the effects of BDMC on the Aβ1–42-induced neurotoxicity. SK-N-SH cells were pretreated with BDMC and with or without compound C and EX527 for 30 min after co-incubation with rotenone for 24 h. Subsequently, western blotting, cell viability assay and SOD and GSH activity measurement were performed. Results BDMC increased the cell survival, anti-OS ability, AMPK phosphorylation levels and SIRT1 in SK-N-SH cells treated with Aβ1–42. However, after treatment with compound C, an AMPK inhibitor, and EX527, an SIRT1inhibitor, the neuroprotective roles of BDMC on SK-N-SH cells treated with Aβ1–42 were inhibited. Conclusion These results suggest that BDMC exerts a neuroprotective role on SK-N-SH cells in vitro via AMPK/SIRT1 signaling, laying the foundation for the application of BDMC in the treatment of neurodegenerative diseases related to AMPK/SIRT1 signaling.
Collapse
Affiliation(s)
- Chenlin Xu
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China.,Xiangxi Autonomous Prefecture People's Hospital, Jishou, Hunan 416000, People's Republic of China
| | - Zijian Xiao
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Heng Wu
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Guijuan Zhou
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Duanqun He
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yunqian Chang
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yihui Li
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Gang Wang
- Department of Rehabilitation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Ming Xie
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|