1
|
Guzenko VV, Bachurin SS, Khaitin AM, Dzreyan VA, Kalyuzhnaya YN, Bin H, Demyanenko SV. Acetylation of p53 in the Cerebral Cortex after Photothrombotic Stroke. Transl Stroke Res 2024; 15:970-985. [PMID: 37580538 DOI: 10.1007/s12975-023-01183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
p53 expression and acetylation are crucial for the survival and death of neurons in penumbra. At the same time, the outcome of ischemia for penumbra cells depends largely on the histone acetylation status, but the effect of histone acetyltransferases and deacetylases on non-histone proteins like p53 is largely understudied. With combined in silico and in vitro approach, we have identified enzymes capable of acetylation/deacetylation, distribution, stability, and pro-apoptotic activity of p53 in ischemic penumbra in the course of post-stroke recovery, and also detected involved loci of acetylation in p53. The dynamic regulation of the acetylation of p53 at lysine 320 is controlled by acetyltransferase PCAF and histone deacetylases HDAC1 and HDAC6. The in silico simulation have made it possible to suggest the acetylation of p53 at lysine 320 acetylation may facilitate the shuttling of p53 between the nucleus and cytoplasm in penumbra neurons. Acetylation of p53 at lysine 320 is more preferable than acetylation at lysine 373 and probably promotes survival and repair of penumbra neurons after stroke. Strategies to increase p53 acetylation at lysine 320 via increasing PCAF activity, inhibiting HDAC1 or HDAC6, inhibiting p53, or a combination of these interventions may have therapeutic benefits for stroke recovery and would be promising for neuroprotective therapy of stroke.
Collapse
Affiliation(s)
- V V Guzenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - S S Bachurin
- Department of General and Clinical Biochemistry no.2, Rostov State Medical University, Nakhichevansky lane, Rostov-on-Don, 344022, Russia
| | - A M Khaitin
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - V A Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - Y N Kalyuzhnaya
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - He Bin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - S V Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia.
- Department of General and Clinical Biochemistry no.2, Rostov State Medical University, Nakhichevansky lane, Rostov-on-Don, 344022, Russia.
| |
Collapse
|
2
|
Li X, Liu N, Wu D, Li SC, Wang Q, Zhang DW, Song LL, Huang M, Chen X, Li W. Hippocampal transcriptomic analyses reveal the potential antiapoptotic mechanism of a novel anticonvulsant agent Q808 on pentylenetetrazol-induced epilepsy in rats. Biomed Pharmacother 2024; 175:116746. [PMID: 38739991 DOI: 10.1016/j.biopha.2024.116746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
Brain apoptosis is one of the main causes of epileptogenesis. The antiapoptotic effect and potential mechanism of Q808, an innovative anticonvulsant chemical, have never been reported. In this study, the seizure stage and latency to reach stage 2 of pentylenetetrazol (PTZ) seizure rat model treated with Q808 were investigated. The morphological change and neuronal apoptosis in the hippocampus were detected by hematoxylin and eosin (HE) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining, respectively. The hippocampal transcriptomic changes were observed using RNA sequencing (RNA-seq). The expression levels of hub genes were verified by quantitative reverse-transcription PCR (qRT-PCR). Results revealed that Q808 could allay the seizure score and prolong the stage 2 latency in seizure rats. The morphological changes of neurons and the number of apoptotic cells in the DG area were diminished by Q808 treatment. RNA-seq analysis revealed eight hub genes, including Map2k3, Nfs1, Chchd4, Hdac6, Siglec5, Slc35d3, Entpd1, and LOC103690108, and nine hub pathways among the control, PTZ, and Q808 groups. Hub gene Nfs1 was involved in the hub pathway sulfur relay system, and Map2k3 was involved in the eight remaining hub pathways, including Amyotrophic lateral sclerosis, Cellular senescence, Fc epsilon RI signaling pathway, GnRH signaling pathway, Influenza A, Rap1 signaling pathway, TNF signaling pathway, and Toll-like receptor signaling pathway. qRT-PCR confirmed that the mRNA levels of these hub genes were consistent with the RNA-seq results. Our findings might contribute to further studies exploring the new apoptosis mechanism and actions of Q808.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Ning Liu
- Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130015, China
| | - Di Wu
- Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130015, China
| | - Shu Chang Li
- Jilin Cancer Hospital, ChangChun, Jilin 130012, China
| | - Qing Wang
- Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130015, China
| | - Dian-Wen Zhang
- Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130015, China
| | - Lian-Lian Song
- Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130015, China
| | - Min Huang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| | - Wei Li
- Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130015, China.
| |
Collapse
|
3
|
Majdi A, Mostafavi H, Moharrami A, Yaraghi S, Ghaffari Tabrizi A, Dojahani M, Alirezapour E, Mansori K. Role of histone deacetylases and sirtuins in the ischaemic stroke: a protocol for a systematic review and meta-analysis of animal studies. Stroke Vasc Neurol 2024:svn-2024-003235. [PMID: 38782494 DOI: 10.1136/svn-2024-003235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Stroke is a major cause of global mortality and disability. Currently, the treatment of acute ischaemic stroke through reperfusion has posed several challenges, raising the need for complementary options to protect the ischaemic penumbra. Recent investigations have indicated that certain epigenetic factors, specifically, histone deacetylases (HDACs) and sirtuins, can be promising for ischaemic stroke therapy, with recent studies suggesting that inhibitors of HDACs or sirtuins may provide neuronal protection after ischaemic stroke. However, the impact of specific HDAC/sirtuin isoforms on the survival of neuronal cells following stroke is still uncertain. This study aims to provide a comprehensive overview of the function of HDACs and their modulators in the treatment of acute ischaemic stroke. METHODS This systematic review and meta-analysis will encompass animal intervention studies that explore the efficacy of modulation of HDACs and sirtuins in the acute phase of ischaemic stroke. The review will be reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Electronic searches will be conducted in PubMed, Web of Science and Scopus, with subsequent screening by independent reviewers based on the established eligibility criteria. Methodological quality will be evaluated using the SYRCLE risk of bias tool. The primary outcomes will be infarct volume and functional response, with the secondary outcomes established a priori. Data pertaining to infarct volume will be used for random-effects meta-analysis. Additionally, a descriptive summary will be conducted for the functional response and secondary outcomes. DISCUSSION No systematic review and meta-analysis on the treatment of ischaemic stroke through HDAC modulation has been conducted to date. A comprehensive analysis of the available literature on the relevant preclinical investigations can yield invaluable insights in discerning the most effective trials and in further standardisation of preclinical studies. SYSTEMATIC REVIEW REGISTRATION This systematic review has been recorded in the International Prospective Register of Systematic Reviews (PROSPERO), with the assigned reference number: CRD42023381420.
Collapse
Affiliation(s)
- Ali Majdi
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Mostafavi
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Moharrami
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shahin Yaraghi
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Morteza Dojahani
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Erfan Alirezapour
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kamyar Mansori
- Department of Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
4
|
Liu L, Zhang L, Chen X, Yang K, Cui H, Qian R, Zhao S, Wang L, Su X, Zhao M, Wang M, Hu Z, Lu T, Zhu Y, Zhou QQ, Yao Y. Design and synthesis of 1H-benzo[d]imidazole selective HDAC6 inhibitors with potential therapy for multiple myeloma. Eur J Med Chem 2023; 261:115833. [PMID: 37797564 DOI: 10.1016/j.ejmech.2023.115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Pan-HDAC inhibitors exhibit significant inhibitory activity against multiple myeloma, however, their clinical applications have been hampered by substantial toxic side effects. In contrast, selective HDAC6 inhibitors have demonstrated effectiveness in treating multiple myeloma. Compounds belonging to the class of 1H-benzo[d]imidazole hydroxamic acids have been identified as novel HDAC6 inhibitors, with the benzimidazole group serving as a specific linker for these inhibitors. Notably, compound 30 has exhibited outstanding HDAC6 inhibitory activity (IC50 = 4.63 nM) and superior antiproliferative effects against human multiple myeloma cells, specifically RPMI-8226. Moreover, it has been shown to induce cell cycle arrest in the G2 phase and promote apoptosis through the mitochondrial pathway. In a myeloma RPMI-8226 xenograft model, compound 30 has demonstrated significant in vivo antitumor efficacy (T/C = 34.8%) when administered as a standalone drug, with no observable cytotoxicity. These findings underscore the immense potential of compound 30 as a promising therapeutic agent for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Linfu Liu
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Liyuan Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Xuxi Chen
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Kang Yang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Hao Cui
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China
| | - Rui Qian
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Shanshan Zhao
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Liqun Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Manyu Zhao
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Mengzhu Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Zan Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yong Zhu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Qing-Qing Zhou
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu, 211100, PR China; Department of Diagnostic Radiology, Jinling Hospital, Affiliated Nanjing Medical University, Nanjing, 210002, PR China.
| | - Yuqin Yao
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
5
|
Tinkov OV, Grigorev VY, Grigoreva LD, Osipov VN, Kolotaev AV, Khachatryan DS. HDAC6 detector: online application for evaluating compounds as potential histone deacetylase 6 inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:619-637. [PMID: 37565331 DOI: 10.1080/1062936x.2023.2244419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
The HDAC6 (histone deacetylase 6) enzyme plays a key role in many biological processes, including cell division, apoptosis, and immune response. To date, HDAC6 inhibitors are being developed as effective drugs for the treatment of various diseases. In this work, adequate QSAR models of HDAC6 inhibitors are proposed. They are integrated into the developed application HDAC6 Detector, which is freely available at https://ovttiras-hdac6-detector-hdac6-detector-app-yzh8y5.streamlit.app/. The web application HDAC6 Detector can be used to perform virtual screening of HDAC6 inhibitors by dividing the compounds into active and inactive ones relative to the reference vorinostat compound (IC50 = 10.4 nM). The web application implements a structural interpretation of the developed QSAR models. In addition, the application can evaluate the compliance of a compound with Lipinski's rule. The developed models are used for virtual screening of a series of 12 new hydroxamic acids, namely, the derivatives of 3-hydroxyquinazoline-4(3H)-ones and 2-aryl-2,3-dihydroquinazoline-4(1H)-ones. In vitro evaluation of the inhibitory activity of this series of compounds against HDAC6 allowed us to confirm the results of virtual screening and to select promising compounds V-6 and V-11, the IC50 of which is 0.99 and 0.81 nM, respectively.
Collapse
Affiliation(s)
- O V Tinkov
- Department of Pharmacology and Pharmaceutical Chemistry, Medical Faculty, Shevchenko Transnistria State University, Tiraspol, Moldova
| | - V Y Grigorev
- Institute of Physiologically Active Compounds, Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - L D Grigoreva
- Department of Fundamental Physicochemical Engineering, Moscow State University, Moscow, Russia
| | - V N Osipov
- Department of Chemical Synthesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Kolotaev
- National Research Centre, Kurchatov Institute, Moscow, Russia
| | - D S Khachatryan
- National Research Centre, Kurchatov Institute, Moscow, Russia
| |
Collapse
|
6
|
Li Y, Liu C, Wang G, Wang H, Liu X, Huang C, Chen Y, Fan L, Zhou L, Tong A. HDAC3 inhibitor (BRD3308) modulates microglial pyroptosis and neuroinflammation through PPARγ/NLRP3/GSDMD to improve neurological function after intraventricular hemorrhage in mice. Neuropharmacology 2023:109633. [PMID: 37327970 DOI: 10.1016/j.neuropharm.2023.109633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/01/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Neuroinflammation plays a vital role in intraventricular hemorrhage (IVH). Excessive neuroinflammation after IVH can activate the inflammasome in the cell and accelerate the occurrence of pyroptosis in cells, produce more inflammatory mediators, increase cell death, and lead to neurological deficits. Previous studies have reported that BRD3308 (BRD), an inhibitor of histone deacetylation by histone deacetylase 3 (HDAC3), suppresses inflammation-induced apoptosis and exhibits anti-inflammatory properties. However, it is unclear how BRD reduces the occurrence of the inflammatory cascade. In this study, we stereotactically punctured the ventricles of male C57BL/6J mice and injected autologous blood via the tail vein to simulate ventricular hemorrhage. Magnetic resonance imaging was used to detect ventricular hemorrhage and enlargement. Our findings demonstrated that BRD treatment significantly improved neurobehavioral performance and decreased neuronal loss, microglial activation, and pyroptosis in the hippocampus after IVH. At the molecular level, this treatment upregulated the expression of peroxisome proliferator-activated receptor γ (PPARγ) and inhibited NLRP3-mediated pyroptosis and inflammatory cytokines. Therefore, we concluded that BRD reduced pyroptosis and neuroinflammation and improve nerve function in part by activating the PPARγ/NLRP3/GSDMD signaling pathway. Our findings suggest a potential preventive role for BRD in IVH.
Collapse
Affiliation(s)
- Yuanyou Li
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxiang Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Huang
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China
| | - Yaxing Chen
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Lingjie Fan
- College of Computer Science, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Shi X, Jiang X, Chen C, Zhang Y, Sun X. The interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases: Implications for therapy. Pharmacol Res 2022; 184:106452. [PMID: 36116706 DOI: 10.1016/j.phrs.2022.106452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Microtubules, a highly dynamic cytoskeleton, participate in many cellular activities including mechanical support, organelles interactions, and intracellular trafficking. Microtubule organization can be regulated by modification of tubulin subunits, microtubule-associated proteins (MAPs) or agents modulating microtubule assembly. Increasing studies demonstrate that microtubule disorganization correlates with various cardiocerebrovascular diseases including heart failure and ischemic stroke. Microtubules also mediate intracellular transport as well as intercellular transfer of mitochondria, a power house in cells which produce ATP for various physiological activities such as cardiac mechanical function. It is known to all that both microtubules and mitochondria participate in the progression of cancer and Parkinson's disease. However, the interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases remain unclear. In this paper, we will focus on the roles of microtubules in cardiocerebrovascular diseases, and discuss the interplay of mitochondria and microtubules in disease development and treatment. Elucidation of these issues might provide significant diagnostic value as well as potential targets for cardiocerebrovascular diseases.
Collapse
Affiliation(s)
- Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| | - Xuan Jiang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Congwei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yu Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
8
|
Li Y, Gu Z, Lin S, Chen L, Dzreyan V, Eid M, Demyanenko S, He B. Histone Deacetylases as Epigenetic Targets for Treating Parkinson's Disease. Brain Sci 2022; 12:672. [PMID: 35625059 PMCID: PMC9140162 DOI: 10.3390/brainsci12050672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disease that is increasingly becoming a global threat to the health and life of the elderly worldwide. Although there are some drugs clinically available for treating PD, these treatments can only alleviate the symptoms of PD patients but cannot completely cure the disease. Therefore, exploring other potential mechanisms to develop more effective treatments that can modify the course of PD is still highly desirable. Over the last two decades, histone deacetylases, as an important group of epigenetic targets, have attracted much attention in drug discovery. This review focused on the current knowledge about histone deacetylases involved in PD pathophysiology and their inhibitors used in PD studies. Further perspectives related to small molecules that can inhibit or degrade histone deacetylases to treat PD were also discussed.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| | - Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, 344090 Rostov-on-Don, Russia; (V.D.); (M.E.)
| | - Moez Eid
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, 344090 Rostov-on-Don, Russia; (V.D.); (M.E.)
| | - Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, 344090 Rostov-on-Don, Russia; (V.D.); (M.E.)
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| |
Collapse
|
9
|
Dou B, Ma F, Jiang Z, Zhao L. Blood HDAC4 Variation Links With Disease Activity and Response to Tumor Necrosis Factor Inhibitor and Regulates CD4+ T Cell Differentiation in Ankylosing Spondylitis. Front Med (Lausanne) 2022; 9:875341. [PMID: 35602496 PMCID: PMC9121817 DOI: 10.3389/fmed.2022.875341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 12/17/2022] Open
Abstract
Purpose Histone deacetylase 4 (HDAC4) regulates the progression of autoimmune diseases. This study aimed to further investigate the correlation between HDAC4 and Th cells, inflammation, disease activity, and treatment response in patients with ankylosing spondylitis (AS). Methods A total of 132 active patients with AS were enrolled, of whom 54 patients received TNF inhibitor (TNFi) and 78 patients received NSAID. Serum HDAC4 was measured by ELISA in patients with AS before treatment (W0) and at week (W)4, W8, and W12 after treatment. Meanwhile, serum HDAC4 was detected in 30 patients with osteoarthritis and in 30 healthy controls (HCs) by ELISA. Besides, naïve CD4+ T cells from patients with AS were isolated, followed by modulation of HDAC4 and then polarization toward Th1, Th2, and Th17. Results Histone deacetylase 4 was reduced in patients with AS compared with HCs and patients with osteoarthritis (both P < 0.01). In patients with AS, HDAC4 was negatively correlated with TNF (P < 0.001), IL-1β (P = 0.003), Th17 proportion (P = 0.008), C-reactive protein (P < 0.001), and ASDAS (P = 0.038), but not with IL-6, Th1 proportion, or other characteristics. Meanwhile, HDAC4 increased from W0 to W12 (P < 0.001); HDAC4 at W8 (P = 0.014) and W12 (P = 0.006) was raised in ASAS40-response patients than ASAS40-non-response patients; further subgroup analysis showed that HDAC4 at W12 was higher in ASAS40-response patients than ASAS40-non-response patients (P = 0.016) in the TNFi-treated group, but not in the NSAID-treated group. In addition, HDAC4 negatively regulated the polarization of naïve CD4+ T cells toward Th17 (P < 0.01), but not Th1 or Th2. Conclusion Histone deacetylase 4 is associated with lower inflammation, and the disease activity negatively regulates Th17 polarization, whose increment after treatment reflects favorable outcomes in patients with AS.
Collapse
Affiliation(s)
- Bin Dou
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Zhenyu Jiang
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zhenyu Jiang
| | - Ling Zhao
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, China
- Ling Zhao
| |
Collapse
|
10
|
Gu X, Zhang H, Jiao M, Han B, Zhang Z, Li J, Zhang Q. Histone deacetylase 6 inhibitors with blood-brain barrier penetration as a potential strategy for CNS-Disorders therapy. Eur J Med Chem 2022; 229:114090. [PMID: 34992037 DOI: 10.1016/j.ejmech.2021.114090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 11/27/2022]
Abstract
Histone deacetylase 6 inhibitors (HDAC6is) have been applied to certain cancer diseases and more recently to central nervous system (CNS) disorders including Rett syndrome, Alzheimer's and Parkinson's diseases, and major depressive disorder. Brain penetrance is the major challenge for the development of HDAC6is as potential therapeutics for CNS disorders due in part to the polarity of hydroxamate ZBG. Hence, only a handful of brain-penetrant HDAC6is have been reported and a few display appropriate in vitro and in vivo activities in models of neurological diseases in last decades. This review summarizes the contemporary research being done on HADC6is with brain penetration both the biological pathways involved and the structural modification attempts.
Collapse
Affiliation(s)
- Xiu Gu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; School of Chemistry & Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Hao Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Minru Jiao
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Bo Han
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Zixue Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| |
Collapse
|
11
|
Demyanenko S, Dzreyan V, Sharifulina S. Histone Deacetylases and Their Isoform-Specific Inhibitors in Ischemic Stroke. Biomedicines 2021; 9:biomedicines9101445. [PMID: 34680562 PMCID: PMC8533589 DOI: 10.3390/biomedicines9101445] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia is the second leading cause of death in the world and multimodal stroke therapy is needed. The ischemic stroke generally reduces the gene expression due to suppression of acetylation of histones H3 and H4. Histone deacetylases inhibitors have been shown to be effective in protecting the brain from ischemic damage. Histone deacetylases inhibitors induce neurogenesis and angiogenesis in damaged brain areas promoting functional recovery after cerebral ischemia. However, the role of different histone deacetylases isoforms in the survival and death of brain cells after stroke is still controversial. This review aims to analyze the data on the neuroprotective activity of nonspecific and selective histone deacetylase inhibitors in ischemic stroke.
Collapse
|
12
|
Lu R, Cui SS, Wang XX, Chen L, Liu F, Gao J, Wang W. Astrocytic c-Jun N-terminal kinase-histone deacetylase-2 cascade contributes to glutamate transporter-1 decrease and mechanical allodynia following peripheral nerve injury in rats. Brain Res Bull 2021; 175:213-223. [PMID: 34333051 DOI: 10.1016/j.brainresbull.2021.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
Decrease of glutamate transporter-1 (GLT-1) in the spinal dorsal horn after nerve injury induces enhanced excitatory transmission and causes persistent pain. Histone deacetylases (HDACs)-catalyzed deacetylation might contribute to the decrease of GLT-1, while the detailed mechanisms have yet to be fully elaborated. Spinal nerve ligation (SNL) induced significant increases of HDAC2 and decreases of GLT-1 in spinal astrocytes. Intrathecal infusion of the HDAC2 inhibitors attenuated the decrease of GLT-1 and enhanced phosphorylation of glutamate receptors. GLT-1 and phosphorylated c-Jun N-terminal kinase (JNK) were highly colocalized in the spinal cord, and a large number of pJNK positive cells were HDAC2 positive. Intrathecally infusion of the JNK inhibitor SP600125 significantly inhibited SNL-induced upregulation of HDAC2. SNL-induced HDAC2 up-regulation could be inhibited by the neutralizing anti-tumor necrosis factor-α (TNF-α) binding protein etanercept or the microglial inhibitor minocycline. In cultured astrocytes, TNF-α induced enhanced phosphorylation of JNK and a significant increase of HDAC2, as well as a remarkable decrease of GLT-1, which could be prevented by SP600125 or the HDAC2 specific inhibitor CAY10683. Our data suggest that astrocytic JNK-HDAC2 cascade contributes to GLT-1 decrease and mechanical allodynia following peripheral nerve injury. Neuroimmune activation after peripheral nerve injury could induce epigenetic modification changes in astrocytes and contribute to chronic pain maintenance.
Collapse
Affiliation(s)
- Rui Lu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China
| | - Shan-Shan Cui
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei 430060, China
| | - Xiao-Xia Wang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China
| | - Lei Chen
- Department of Pain Relief, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Fei Liu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China
| | - Jing Gao
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China.
| | - Wei Wang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China.
| |
Collapse
|
13
|
Demyanenko S, Sharifulina S. The Role of Post-Translational Acetylation and Deacetylation of Signaling Proteins and Transcription Factors after Cerebral Ischemia: Facts and Hypotheses. Int J Mol Sci 2021; 22:ijms22157947. [PMID: 34360712 PMCID: PMC8348732 DOI: 10.3390/ijms22157947] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylase (HDAC) and histone acetyltransferase (HAT) regulate transcription and the most important functions of cells by acetylating/deacetylating histones and non-histone proteins. These proteins are involved in cell survival and death, replication, DNA repair, the cell cycle, and cell responses to stress and aging. HDAC/HAT balance in cells affects gene expression and cell signaling. There are very few studies on the effects of stroke on non-histone protein acetylation/deacetylation in brain cells. HDAC inhibitors have been shown to be effective in protecting the brain from ischemic damage. However, the role of different HDAC isoforms in the survival and death of brain cells after stroke is still controversial. HAT/HDAC activity depends on the acetylation site and the acetylation/deacetylation of the main proteins (c-Myc, E2F1, p53, ERK1/2, Akt) considered in this review, that are involved in the regulation of cell fate decisions. Our review aims to analyze the possible role of the acetylation/deacetylation of transcription factors and signaling proteins involved in the regulation of survival and death in cerebral ischemia.
Collapse
Affiliation(s)
- Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, 344090 Rostov-on-Don, Russia
| | - Svetlana Sharifulina
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, 344090 Rostov-on-Don, Russia
- Neuroscience Center HiLife, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014 Helsinki, Finland
| |
Collapse
|
14
|
Xu Q, Mou Y, Wang S, Gao X, Zhang Y, Wang Z, Xu X, Han Y, Jia W, Zhang M, Zhao L, Liu D. Design, synthesis and biological evaluation of selective histone deacetylase 6 (HDAC6) inhibitors bearing benzoindazole or pyrazoloindazole scaffold as surface recognition motif. Bioorg Chem 2021; 111:104910. [PMID: 33894432 DOI: 10.1016/j.bioorg.2021.104910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/20/2021] [Accepted: 04/07/2021] [Indexed: 01/26/2023]
Abstract
A series of compounds were designed and synthesized based on the compound 11i bearing phenylpyrazole scaffold with histone deacetylase 6 (HDAC6) inhibitory activity. Most of the compounds showed considerable inhibitory activity against HDAC6 and compound A16 with good inhibitory activity was found therein. We further found that A16 had an inhibitory effect on inflammatory mediators (NO, TNF-α, IL-6) involved in inflammatory response and neuroendocrine regulation. In addition, A16 has a certain neuroprotective effect on PC12 cells injured by hydrogen peroxide. Acute toxicity assay showed that the LD50 of A16 was 274.47 mg/kg in mouse model. Furthermore, A16 displayed good stability properties in microsomes and plasma.
Collapse
Affiliation(s)
- Qihao Xu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Siyuan Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoxiao Gao
- Department of Pharmacology, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yulong Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhi Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangwei Xu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Han
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenlong Jia
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meihui Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
15
|
Zhang XH, Qin-Ma, Wu HP, Khamis MY, Li YH, Ma LY, Liu HM. A Review of Progress in Histone Deacetylase 6 Inhibitors Research: Structural Specificity and Functional Diversity. J Med Chem 2021; 64:1362-1391. [PMID: 33523672 DOI: 10.1021/acs.jmedchem.0c01782] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Histone deacetylases (HDACs) are essential for maintaining homeostasis by catalyzing histone deacetylation. Aberrant expression of HDACs is associated with various human diseases. Although HDAC inhibitors are used as effective chemotherapeutic agents in clinical practice, their applications remain limited due to associated side effects induced by weak isoform selectivity. HDAC6 displays unique structure and cellular localization as well as diverse substrates and exhibits a wider range of biological functions than other isoforms. HDAC6 inhibitors have been effectively used to treat cancers, neurodegenerative diseases, and autoimmune disorders without exerting significant toxic effects. Progress has been made in defining the crystal structures of HDAC6 catalytic domains which has influenced the structure-based drug design of HDAC6 inhibitors. This review summarizes recent literature on HDAC6 inhibitors with particular reference to structural specificity and functional diversity. It may provide up-to-date guidance for the development of HDAC6 inhibitors and perspectives for optimization of therapeutic applications.
Collapse
Affiliation(s)
- Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qin-Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hui-Pan Wu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mussa Yussuf Khamis
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yi-Han Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.,China Meheco Topfond Pharmaceutical Co., Ltd., Zhumadian, 463000, PR China
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
16
|
Uzdensky AB, Demyanenko S. Histone acetylation and deacetylation in ischemic stroke. Neural Regen Res 2021; 16:1529-1530. [PMID: 33433467 PMCID: PMC8323678 DOI: 10.4103/1673-5374.303024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Anatoly B Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|