1
|
Kalinderi K, Papaliagkas V, Fidani L. Current genetic data on depression and anxiety in Parkinson's disease patients. Parkinsonism Relat Disord 2024; 118:105922. [PMID: 37935601 DOI: 10.1016/j.parkreldis.2023.105922] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder affecting about 1 % of the population over the age of 60 years. PD is characterized by a wide spectrum of symptomatology including not only motor symptoms but non-motor symptoms, as well. Depression is one of the most common non-motor manifestations, and the most frequent neuropsychiatric comorbidity in PD. Neuropsychiatric symptoms like depression and anxiety may precede the appearance of motor features, highlighting their importance in the early detection of the disease and its strategic management. This review discusses the possible genetic background of the development of these neuropsychiatric symptoms in PD patients analyzing current genetic data associated with this clinical entity.
Collapse
Affiliation(s)
- Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400, Thessaloniki, Greece
| | - Liana Fidani
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
2
|
Boi L, Fisone G. Investigating affective neuropsychiatric symptoms in rodent models of Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:119-186. [PMID: 38341228 DOI: 10.1016/bs.irn.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Affective neuropsychiatric disorders such as depression, anxiety and apathy are among the most frequent non-motor symptoms observed in people with Parkinson's disease (PD). These conditions often emerge during the prodromal phase of the disease and are generally considered to result from neurodegenerative processes in meso-corticolimbic structures, occurring in parallel to the loss of nigrostriatal dopaminergic neurons. Depression, anxiety, and apathy are often treated with conventional medications, including selective serotonin reuptake inhibitors, tricyclic antidepressants, and dopaminergic agonists. The ability of these pharmacological interventions to consistently counteract such neuropsychiatric symptoms in PD is still relatively limited and the development of reliable experimental models represents an important tool to identify more effective treatments. This chapter provides information on rodent models of PD utilized to study these affective neuropsychiatric symptoms. Neurotoxin-based and genetic models are discussed, together with the main behavioral tests utilized to identify depression- and anxiety-like behaviors, anhedonia, and apathy. The ability of various therapeutic approaches to counteract the symptoms observed in the various models is also reviewed.
Collapse
Affiliation(s)
- Laura Boi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Angelopoulou E, Bougea A, Paudel YN, Georgakopoulou VE, Papageorgiou SG, Piperi C. Genetic Insights into the Molecular Pathophysiology of Depression in Parkinson's Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1138. [PMID: 37374342 DOI: 10.3390/medicina59061138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Parkinson's disease (PD) is a clinically heterogeneous disorder with poorly understood pathological contributing factors. Depression presents one of the most frequent non-motor PD manifestations, and several genetic polymorphisms have been suggested that could affect the depression risk in PD. Therefore, in this review we have collected recent studies addressing the role of genetic factors in the development of depression in PD, aiming to gain insights into its molecular pathobiology and enable the future development of targeted and effective treatment strategies. Materials and Methods: we have searched PubMed and Scopus databases for peer-reviewed research articles published in English (pre-clinical and clinical studies as well as relevant reviews and meta-analyses) investigating the genetic architecture and pathophysiology of PD depression. Results: in particular, polymorphisms in genes related to the serotoninergic pathway (sodium-dependent serotonin transporter gene, SLC6A4, tryptophan hydrolase-2 gene, TPH2), dopamine metabolism and neurotransmission (dopamine receptor D3 gene, DRD3, aldehyde dehydrogenase 2 gene, ALDH2), neurotrophic factors (brain-derived neurotrophic factor gene, BDNF), endocannabinoid system (cannabinoid receptor gene, CNR1), circadian rhythm (thyrotroph embryonic factor gene, TEF), the sodium-dependent neutral amino acid transporter B(0)AT2 gene, SLC6A15), and PARK16 genetic locus were detected as altering susceptibility to depression among PD patients. However, polymorphisms in the dopamine transporter gene (SLC6A3), monoamine oxidase A (MAOA) and B (MAOB) genes, catechol-O-methyltransferase gene (COMT), CRY1, and CRY2 have not been related to PD depression. Conclusions: the specific mechanisms underlying the potential role of genetic diversity in PD depression are still under investigation, however, there is evidence that they may involve neurotransmitter imbalance, mitochondrial impairment, oxidative stress, and neuroinflammation, as well as the dysregulation of neurotrophic factors and their downstream signaling pathways.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Anastasia Bougea
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 46150, Selangor, Malaysia
| | | | - Sokratis G Papageorgiou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| |
Collapse
|
4
|
Woitalla D, Buhmann C, Hilker-Roggendorf R, Höglinger G, Koschel J, Müller T, Weise D. Role of dopamine agonists in Parkinson's disease therapy. J Neural Transm (Vienna) 2023; 130:863-873. [PMID: 37165120 DOI: 10.1007/s00702-023-02647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Dopamine agonists are an important component of Parkinson's therapy. When weighing up the various therapy options, therapy with levodopa has recently been increasingly preferred due to its stronger efficacy and the ostensibly lower rate of side effects. The advantage of the lower incidence of motor complications during therapy with dopamine agonists was neglected. The occurrence of side effects can be explained by the different receptor affinity to the individual dopaminergic and non-dopaminergic receptors of the individual dopamine agonists. However, the different affinity to individual receptors also explains the different effect on individual Parkinson symptoms and can, therefore, contribute to a targeted use of the different dopamine agonists. Since comparative studies on the differential effect of dopamine agonists have only been conducted for individual substances, empirical knowledge of the differential effect is of great importance. Therefore, the guidelines for the treatment of Parkinson's disease do not consider the differential effect of the dopamine agonists. The historical consideration of dopamine agonists within Parkinson's therapy deserves special attention to be able to classify the current discussion about the significance of dopamine agonists.
Collapse
Affiliation(s)
- D Woitalla
- Department of Neurology, Katholische Kliniken Der Ruhrhalbinsel, Essen, Germany.
| | - C Buhmann
- Department of Neurology, Universitätsklinikum Hamburg, Hamburg, Germany
| | | | - G Höglinger
- Department of Neurology, Medizinische Hochschule Hannover, Hannover, Germany
| | - J Koschel
- Department of Neurology Parkinson-Klinik Ortenau, Wolfach, Germany
| | - T Müller
- Department of Neurology, Alexianer St. Joseph Krankenhaus, Berlin, Germany
| | - D Weise
- Department of Neurology, Asklepios Fachklinikum Stadtroda, Stadtroda, Germany
| |
Collapse
|
5
|
Kang X, Liu L, Wang W, Wang Y. Effects of different doses of dopamine receptor agonist pramipexole on neurobehaviors and changes of mitochondrial membrane potentials in rats with global cerebral ischemia-reperfusion injury. J Stroke Cerebrovasc Dis 2023; 32:107142. [PMID: 37105127 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVE To explore the effects of different doses of dopamine receptor agonist pramipexole on neurobehaviors and changes of mitochondrial membrane potential in rats with global cerebral ischemia-reperfusion injury. METHODS A total of 75 SPF Sprague-Dawley male rats were randomly divided into sham group (n=20), model group (n=20), pramipexole administration group (n=35). The rat model of global cerebral ischemia-reperfusion injury was prepared by the modified Pulsinelli's four-vessel occlusion method. Pramipexole administration group was administered intraperitoneally in rats with global cerebral ischemia-reperfusion injury at different doses of pramipexole 0.25 mg/kg, 0.5 mg/kg, 1 mg/kg, 2 mg/kg, once a day for 14 consecutive days. Based on the results of modified neurological severity scores, open field test and morphology by Nissl's staining to determine the optimal dose of pramipexole. Mitochondrial membrane potential in the optimal dose of pramipexole administration group were measured by the JC-1 fluorescent probe staining method. RESULTS 1. Different doses of pramipexole 0.25 mg/kg, 0.5 mg/kg, 1 mg/kg, and 2 mg/kg, were used as drug administration in rats with global cerebral ischemia-reperfusion injury for 14 consecutive days, and we found that all four doses of pramipexole could improve the modified neurological severity scores of rats with global cerebral ischemia-reperfusion injury to varying degrees, but only 0.5 mg/kg pramipexole at 1, 3, 7 and 14 days consistently reduced modified neurological severity scores and improved neurological function in rats with global cerebral ischemia-reperfusion injury. In the open-field test, only 0.5 mg/kg pramipexole increased the number of entries into the central zone, duration spent in the central zone, total distance travelled in the open field and average velocity, which improved the spontaneous activities and reduced anxiety and depression of rats with global cerebral ischemia-reperfusion injury. 2. Different doses of pramipexole 0.25 mg/kg, 0.5 mg/kg, 1 mg/kg, and 2 mg/kg for 14 consecutive days significantly increased the number of surviving neurons in the hippocampal CA1 subfield in rats with global cerebral ischemia-reperfusion injury to varying degrees. Based on these results, we tentatively found that 0.5 mg/kg pramipexole may be the optimal dose in all of the above. 3. We found that 0.5 mg/kg pramipexole significantly increased the mitochondrial membrane potential in rats after global cerebral ischemia-reperfusion injury. CONCLUSION Different doses of dopamine receptor agonist pramipexole improved neurological function of rats with global cerebral ischemia-reperfusion injury to varying degrees, and 0.5 mg/kg pramipexole may be the optimal dose in all of the above. Pramipexole may produce neuroprotective effects by protecting neurons in the hippocampus and improving the mitochondrial membrane potential after global cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiaoyu Kang
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Boai hospital, China Rehabilitation Research Center, No. 10, Jiao Men Bei Road, Fengtai District, 100068 Beijing, China
| | - Lixu Liu
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Boai hospital, China Rehabilitation Research Center, No. 10, Jiao Men Bei Road, Fengtai District, 100068 Beijing, China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China.
| | - Wenzhu Wang
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China; Institute of Rehabilitation Medicine of China, Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, China
| | - Yunlei Wang
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Boai hospital, China Rehabilitation Research Center, No. 10, Jiao Men Bei Road, Fengtai District, 100068 Beijing, China
| |
Collapse
|
6
|
Hayley S, Vahid-Ansari F, Sun H, Albert PR. Mood disturbances in Parkinson's disease: From prodromal origins to application of animal models. Neurobiol Dis 2023; 181:106115. [PMID: 37037299 DOI: 10.1016/j.nbd.2023.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Parkinson's disease (PD) is a complex illness with a constellation of environmental insults and genetic vulnerabilities being implicated. Strikingly, many studies only focus on the cardinal motor symptoms of the disease and fail to appreciate the major non-motor features which typically occur early in the disease process and are debilitating. Common comorbid psychiatric features, notably clinical depression, as well as anxiety and sleep disorders are thought to emerge before the onset of prominent motor deficits. In this review, we will delve into the prodromal stage of PD and how early neuropsychiatric pathology might unfold, followed by later motor disturbances. It is also of interest to discuss how animal models of PD capture the complexity of the illness, including depressive-like characteristics along with motor impairment. It remains to be determined how the underlying PD disease processes contributes to such comorbidity. But some of the environmental toxicants and microbial pathogens implicated in PD might instigate pro-inflammatory effects favoring α-synuclein accumulation and damage to brainstem neurons fueling the evolution of mood disturbances. We posit that comprehensive animal-based research approaches are needed to capture the complexity and time-dependent nature of the primary and co-morbid symptoms. This will allow for the possibility of early intervention with more novel and targeted treatments that fit with not only individual patient variability, but also with changes that occur over time with the evolution of the disease.
Collapse
Affiliation(s)
- S Hayley
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada.
| | - F Vahid-Ansari
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| | - H Sun
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| | - P R Albert
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| |
Collapse
|
7
|
Ahmad MH, Rizvi MA, Ali M, Mondal AC. Neurobiology of depression in Parkinson's disease: Insights into epidemiology, molecular mechanisms and treatment strategies. Ageing Res Rev 2023; 85:101840. [PMID: 36603690 DOI: 10.1016/j.arr.2022.101840] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 12/25/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Parkinson's disease (PD) is characterized mainly by motor dysfunctions due to the progressive loss of dopaminergic neurons. However, PD patients experience a multitude of debilitating non-motor symptoms, including depression, which may have deleteriously detrimental effects on life. Depression is multifactorial and exhibits a bimodal progression in PD, but its underlying molecular mechanisms are poorly understood. Studies demonstrating the pathophysiology of depression in PD and the specific treatment strategies for depression-like symptoms in PD patients are largely lacking, often underrated, under-recognized and, consequently, inadequately/under-treated. Nevertheless, reports suggest that the incidence of depression is approximately 20-30% of PD patients and may precede the onset of motor symptoms. Diagnosing depression in PD becomes difficult due to the clinical overlap in symptomatology between the two diseases, and the nigrostriatal dysfunction alone is insufficient to explain depressive symptoms in PD. Therefore, the current study provides an overview of the molecular mechanisms underlying the development of depression in PD and new insights into developing current antidepressant strategies to treat depression in PD. This review will identify and understand the molecular pathological mechanisms of depression in PD that will fundamentally help tailoring therapeutic interventions for depressive symptoms in PD.
Collapse
Affiliation(s)
- Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mansoor Ali
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
8
|
Dong AQ, Yang YP, Jiang SM, Yao XY, Qi D, Mao CJ, Cheng XY, Wang F, Hu LF, Liu CF. Pramipexole inhibits astrocytic NLRP3 inflammasome activation via Drd3-dependent autophagy in a mouse model of Parkinson's disease. Acta Pharmacol Sin 2023; 44:32-43. [PMID: 35896696 PMCID: PMC9813225 DOI: 10.1038/s41401-022-00951-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/28/2022] [Indexed: 01/18/2023] Open
Abstract
Inflammation is one of the pathogenic processes in Parkinson's disease (PD). Dopamine receptor agonist pramipexole (PPX) is extensively used for PD treatment in clinics. A number of studies show that PPX exerts neuroprotection on dopaminergic (DA) neurons, but the molecular mechanisms underlying the protective effects of PPX on DA neurons are not fully elucidated. In the present study, we investigated whether PPX modulated PD-related neuroinflammation and underlying mechanisms. PD model was established in mice by bilateral striatum injection of lipopolyssaccharide (LPS). The mice were administered PPX (0.5 mg·kg-1·d-1, i.p.) 3 days before LPS injection, and for 3 or 21 days after surgery, respectively, for biochemical and histological analyses. We showed that PPX administration significantly alleviated the loss of DA neurons, and suppressed the astrocyte activation and levels of proinflammatory cytokine IL-1β in the substantia nigra of LPS-injected mice. Furthermore, PPX administration significantly decreased the expression of NLRP3 inflammasome-associated proteins, i.e., cleaved forms of caspase-1, IL-1β, and apoptosis-associated speck-like protein containing a caspase recruit domain (ASC) in the striatum. These results were validated in LPS+ATP-stimulated primary mouse astrocytes in vitro. Remarkably, we showed that PPX (100-400 μM) dose-dependently enhanced the autophagy activity in the astrocytes evidenced by the elevations in LC3-II and BECN1 protein expression, as well as the increase of GFP-LC3 puncta formation. The opposite effects of PPX on astrocytic NLRP3 inflammasome and autophagy were eliminated by Drd3 depletion. Moreover, we demonstrated that both pretreatment of astrocytes with autophagy inhibitor chloroquine (40 μM) in vitro and astrocyte-specific Atg5 knockdown in vivo blocked PPX-caused inhibition on NLRP3 inflammasome and protection against DA neuron damage. Altogether, this study demonstrates an anti-neuroinflammatory activity of PPX via a Drd3-dependent enhancement of autophagy activity in astrocytes, and reveals a new mechanism for the beneficial effect of PPX in PD therapy.
Collapse
Affiliation(s)
- An-qi Dong
- grid.452666.50000 0004 1762 8363Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123 China
| | - Ya-ping Yang
- grid.452666.50000 0004 1762 8363Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Shu-min Jiang
- grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123 China
| | - Xiao-yu Yao
- grid.452666.50000 0004 1762 8363Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123 China
| | - Di Qi
- grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123 China
| | - Cheng-jie Mao
- grid.452666.50000 0004 1762 8363Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Xiao-yu Cheng
- grid.452666.50000 0004 1762 8363Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Fen Wang
- grid.452666.50000 0004 1762 8363Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123 China
| | - Li-fang Hu
- grid.452666.50000 0004 1762 8363Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123 China
| | - Chun-feng Liu
- grid.452666.50000 0004 1762 8363Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123 China ,grid.512482.8Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 China
| |
Collapse
|
9
|
Ning H, Zhou H, Ren J, Zhou G, Yang N, Wang Z, Yuan C, Tian Z, Chen J, Shen L, Zheng H, Zhao Y, Wang H, Liu W, Liu Z. Zishen pingchan granules combined with pramipexole in the improvement of depressive symptoms in Parkinson's disease: a prospective, multicenter, randomized, double-blind, controlled clinical study. Lab Invest 2022; 20:357. [PMID: 35962349 PMCID: PMC9373440 DOI: 10.1186/s12967-022-03551-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/22/2022] [Indexed: 12/05/2022]
Abstract
Background and objective Zishen Pingchan granule (ZPG), a traditional Chinese herbal recipe for treating Parkinson’s disease (PD), is usually used as an add-on drug with some antiparkinsonian drugs in China. The objectives of this study were to evaluate the efficacy, safety, and tolerability of ZPG combined with pramipexole in the treatment of depression in PD (dPD). Methods A 12-week, multicenter, randomized, double-blind, and placebo-controlled study on ZPG was performed on a total of 200 patients who were treated with pramipexole but still had mild to moderate depressive symptoms. Patients were randomly divided into ZPG (n = 100) or placebo (n = 100). The primary effective result was the mean change from the baseline on the Hamilton Depression Scale 17 items (HAM-D-17) over 12 weeks and the clinical efficacy rate. Secondary endpoints were the mean change from the baseline in the Geriatric Depression Scale (GDS-15), Unified Parkinson's disease rating scale Part III (UPDRS III), Parkinson's quality of life scale (PDQ-8), and Parkinson's disease sleep scale (PDSS-2) over 12 weeks. Results After 12 weeks of treatment, ZPG significantly reduced the mean [95% confidence interval] HAMD score vs. placebo (− 1.43 scores [− 2.50, − 0.36]; p = 0.009). The clinical remission rate and responders of the ZPG group were higher than those of the placebo (46.1% vs. 31.0%; p = 0.041; 34.8% vs. 18.4%; p = 0.014). A significant improvement in the PDSS-2 score was also observed in the ZPG group compared with that in the placebo group (− 3.56 scores [− 5.77, − 1.35]; p = 0.002). A total of 7 patients (7.1%) in the ZPG group had mild adverse events (AEs) vs 9 patients (9%) in the placebo group. No severe AEs were observed in either group. The randomization and controlled clinical study revealed that ZPG was effective, safe, and well-tolerated. Conclusion ZPG combined with pramipexole further reduced the depressive symptoms and improved the sleeping quality of PD patients. Trial registration The protocol was retrospectively registered at the Chinese Clinical Trial Registry, Unique identifier: ChiCTR1800019942, date of registration: December 9, 2018; http://www.chictr.org.cn/showproj.aspx?proj=30432
Collapse
Affiliation(s)
- Houxu Ning
- Department of Chinese Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.,Department of Neurology, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Hao Zhou
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jingru Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Gaiyan Zhou
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ning Yang
- Department of Chinese Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhenfu Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100036, China
| | - Canxing Yuan
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zuojun Tian
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China
| | - Juping Chen
- Department of Neurology, Changshu Hospital of Traditional Chinese Medicine, Changshu, 215500, China
| | - Lihua Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226000, China
| | - Huifen Zheng
- Department of Neurology, Geriatric Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210000, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Haidong Wang
- Department of Chinese Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
10
|
Huang J, Lan H, Xie C, Wei C, Liu Z, Huang Z, Zhou Z, Chen L. Pramipexole Protects Against Traumatic Brain Injury-Induced Blood-Brain Barrier (BBB) Dysfunction. Neurotox Res 2022; 40:1020-1028. [PMID: 35524855 DOI: 10.1007/s12640-022-00495-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Traumatic brain injury (TBI) is a severe disease of brain damage accompanied by blood-brain barrier (BBB) dysfunction. The BBB is composed of brain microvascular endothelial cells (BMECs), astrocyte terminus, pericytes, and a basement membrane. Tight junction proteins expressed by BMECs play important roles in preserving BBB integrity. Pramipexole is a selective dopamine agonist applied for treating Parkinson's disease and has been recently claimed with neuroprotective capacity. This study will further explore the impact of Pramipexole on tight junctions and BBB integrity to provide the potential treatment strategy for TBI-induced BBB damage. The TBI model was established in mice and was identified by the promoted brain water content, declined Garcia scores, reduced latency of the rotarod test, aggravated pathological changes in the brain cortex, and excessively released inflammatory factors. After treatment with Pramipexole, the neurofunctional deficits, behavioral disability, and aggravated pathological changes were dramatically reversed, accompanied by the alleviated BBB permeability, and upregulated occludin, an important tight junction protein. TBI model cells were established by the scratching bEnd.3 cells method. Cells were stimulated with 10 and 20 μM Pramipexole, followed by exposure to TBI. Increased fluorescence intensity of FITC-dextran, reduced value of TEER, and downregulated occludin and KLF2 were observed in TBI-exposed cells, all of which were greatly reversed by 10 and 20 μM Pramipexole. Furthermore, in KLF2-silenced bEnd.3 cells, the protective ability of Pramipexole against endothelial permeability and the expression level of occludin were dramatically abolished. Collectively, our results suggest that Pramipexole protected against TBI-induced BBB dysfunction by mediating KLF2.
Collapse
Affiliation(s)
- Junping Huang
- Department of Neurosurgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Huan Lan
- Department of Neurosurgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Changji Xie
- Department of Neurosurgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Chengcong Wei
- Department of Neurosurgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Zhen Liu
- Department of Neurosurgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Zhixi Huang
- Department of Neurosurgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Zhiyu Zhou
- Department of Neurosurgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China.
| | - Lei Chen
- Department of Neurosurgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, Guangdong, China.
| |
Collapse
|