1
|
Liang R, Hu C, Li H, Tang X. Research trends of glioma-related epilepsy: A bibliometric analysis from 2004 to 2023. J Cent Nerv Syst Dis 2024; 16:11795735241286653. [PMID: 39420955 PMCID: PMC11483774 DOI: 10.1177/11795735241286653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
Glioma-related epilepsy (GRE) is a hotspot in recent years and there remains many urgent unsolved issues. This study aimed to conduct bibliometric analysis on GRE research over the past 2 decades. We collected scientific outputs relating to GRE on Web of Science Core Collection (WoSCC) from 2004 to 2023 and conducted visual analysis using VOSviewer and Microsoft Excel. A total of 2697 publications were retrieved with an increasing trend over the past 20 years. The USA ranked first in publication number, total citation and H-index. Institut National de la Sante et de la Recherche Medicale (Inserm) was the institution with the most publications. In the field of GRE, core journals were Journal of Neurosurgery, Epilepsia and Neurology. Duffau, Hugues was the author with the most papers and total citations, and the highest H-index. Co-occurrence analysis revealed that the latest research focus of GRE were awake craniotomy, immunotherapy, cognitive impairment, and basic research on pathogenesis, with particular emphasis on the IDH1 mutation. This study intended to gain a deeper understanding of the current global GRE research and identify hotspots, as well as to provide theoretical reference for further studies.
Collapse
Affiliation(s)
| | | | - Haiyu Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
2
|
Mousavi R, Soltani M, Souri M. Microneedle patch capable of dual drug release for drug delivery to brain tumors. Drug Deliv Transl Res 2024:10.1007/s13346-024-01696-6. [PMID: 39186235 DOI: 10.1007/s13346-024-01696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
Primary brain tumors are mostly managed using surgical resection procedures. Nevertheless, in certain cases, a thin layer of tumors may remain outside of the resection process due to the possibility of permanent injury; these residual tumors expose patients to the risk of tumor recurrence. This study has introduced the use of microneedle patches implanted after surgery with a dual-release mechanism for the administration of doxorubicin. The proposed patches possess the capability to administer drugs directly to the residual tumors and initiate chemotherapy immediately following surgical procedures. Three-dimensional simulation of drug delivery to residual tumors in the brain has been performed based on a finite element method. The impact of four important parameters on drug delivery has been investigated, involving the fraction of drug released in the burst phase, the density of microneedles on the patch, the length of microneedles, and the microvascular density of the tumor. The simulation findings indicate that lowering the fraction of drug released in the initial burst phase reduces the maximum average concentration, but the sustained release that continues for a longer period, increasing the bioavailability of free drug. However, the area under curve (AUC) for different release rates remains unchanged due to the fact that an identical dose of drug is supplied in each instance. By increasing the density of microneedles on the patch, concentration accumulation is provided over an extensive region of tumor, which in turn induces more cancer cell death. A comparative analysis of various lengths reveals that longer microneedles facilitate profound penetration into the tumor layers and present better therapeutic response due to extensive area of the tumor which is exposure to chemotherapeutic drugs. Furthermore, high microvascular density, as a characteristic of the tumor microenvironment, is shown to have a significant impact on the blood microvessels drainage of drugs and consequently lower therapeutic response outcome. Our approach offers a computational framework for creating localized drug delivery systems and addressing the challenges related to residual brain tumors.
Collapse
Affiliation(s)
- Robab Mousavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada.
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada.
- Centre for Sustainable Business, International Business University, Toronto, Canada.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
3
|
de Zwart B, Ruis C. An update on tests used for intraoperative monitoring of cognition during awake craniotomy. Acta Neurochir (Wien) 2024; 166:204. [PMID: 38713405 PMCID: PMC11076349 DOI: 10.1007/s00701-024-06062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Mapping higher-order cognitive functions during awake brain surgery is important for cognitive preservation which is related to postoperative quality of life. A systematic review from 2018 about neuropsychological tests used during awake craniotomy made clear that until 2017 language was most often monitored and that the other cognitive domains were underexposed (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). The field of awake craniotomy and cognitive monitoring is however developing rapidly. The aim of the current review is therefore, to investigate whether there is a change in the field towards incorporation of new tests and more complete mapping of (higher-order) cognitive functions. METHODS We replicated the systematic search of the study from 2018 in PubMed and Embase from February 2017 to November 2023, yielding 5130 potentially relevant articles. We used the artificial machine learning tool ASReview for screening and included 272 papers that gave a detailed description of the neuropsychological tests used during awake craniotomy. RESULTS Comparable to the previous study of 2018, the majority of studies (90.4%) reported tests for assessing language functions (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). Nevertheless, an increasing number of studies now also describe tests for monitoring visuospatial functions, social cognition, and executive functions. CONCLUSIONS Language remains the most extensively tested cognitive domain. However, a broader range of tests are now implemented during awake craniotomy and there are (new developed) tests which received more attention. The rapid development in the field is reflected in the included studies in this review. Nevertheless, for some cognitive domains (e.g., executive functions and memory), there is still a need for developing tests that can be used during awake surgery.
Collapse
Affiliation(s)
- Beleke de Zwart
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands.
| | - Carla Ruis
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Xi C, Jinli S, Jianyao M, Yan C, Huijuan L, Zhongjie S, Zhangyu L, Liwei Z, Yukui L, Sifang C, Guowei T. Fluorescein-guided surgery for high-grade glioma resection: a five-year-long retrospective study at our institute. Front Oncol 2023; 13:1191470. [PMID: 37333818 PMCID: PMC10272354 DOI: 10.3389/fonc.2023.1191470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Objective This study investigates the extent of resection, duration of surgery, intraoperative blood loss, and postoperative complications in patients with high-grade glioma who received surgery with or without sodium fluorescein guidance. Methods A single-center retrospective cohort study was conducted on 112 patients who visited our department and underwent surgery between July 2017 and June 2022, with 61 in the fluorescein group and 51 in the non-fluorescein group. Baseline characteristics, intraoperative blood loss, surgery duration, resection extent, and postoperative complications were documented. Results The duration of surgery was significantly shorter in the fluorescein group than in the non-fluorescein group (P = 0.022), especially in patients with tumors in the occipital lobes (P = 0.013). More critically, the gross total resection (GTR) rate was significantly higher in the fluorescein group than in the non-fluorescein group (45.9% vs. 19.6%, P = 0.003). The postoperative residual tumor volume (PRTV) was also significantly lower in the fluorescein group than in the non-fluorescein group (0.40 [0.12-7.11] cm3 vs. 4.76 [0.44-11.00] cm3, P = 0.020). Particularly in patients with tumors located in the temporal and occipital lobes (temporal, GTR 47.1% vs. 8.3%, P = 0.026; PRTV 0.23 [0.12-8.97] cm3 vs. 8.35 [4.05-20.59] cm3, P = 0.027; occipital, GTR 75.0% vs. 0.0%, P = 0.005; PRTV 0.15 [0.13-1.50] cm3 vs. 6.58 [3.70-18.79] cm3, P = 0.005). However, the two groups had no significant difference in intraoperative blood loss (P = 0.407) or postoperative complications (P = 0.481). Conclusions Fluorescein-guided resection of high-grade gliomas using a special operating microscope is a feasible, safe, and convenient technique that significantly improves GTR rates and reduces postoperative residual tumor volume when compared to conventional white light surgery without fluorescein guidance. This technique is particularly advantageous for patients with tumors located in non-verbal, sensory, motor, and cognitive areas such as the temporal and occipital lobes, and does not increase the incidence of postoperative complications.
Collapse
Affiliation(s)
- Chen Xi
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Sun Jinli
- Department of Reproduction, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Mao Jianyao
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Chen Yan
- Department of Orthopedic Sports Medicine, The First Affiliated Hospital of Xiamen University, Fujian, China
| | - Li Huijuan
- Department of Trauma Center and Acute Abdomen Surgery, The First Affiliated Hospital of Xiamen University, Fujian, China
| | - Shi Zhongjie
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Li Zhangyu
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zhou Liwei
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Li Yukui
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Chen Sifang
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Tan Guowei
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
5
|
Hajtovic S, Sun J, Multani JS, Herrmann LL, Britton H, Gautreaux J, Tortolero L, Harrison G, Golfinos JG, Shepherd TM, Tanweer O, Placantonakis DG. Surgical cytoreduction of deep-seated high-grade glioma through tubular retractor. J Neurosurg 2022:1-12. [PMID: 36334293 DOI: 10.3171/2022.9.jns22842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Maximal safe resection is the goal of surgical treatment for high-grade glioma (HGG). Deep-seated hemispheric gliomas present a surgical challenge due to safety concerns and previously were often considered inoperable. The authors hypothesized that use of tubular retractors would allow resection of deep-seated gliomas with an acceptable safety profile. The purpose of this study was to describe surgical outcomes and survival data after resection of deep-seated HGG with stereotactically placed tubular retractors, as well as to discuss the technical advances that enable such procedures. METHODS This is a retrospective review of 20 consecutive patients who underwent 22 resections of deep-seated hemispheric HGG with the Viewsite Brain Access System by a single surgeon. Patient demographics, survival, tumor characteristics, extent of resection (EOR), and neurological outcomes were recorded. Cannulation trajectories and planned resection volumes depended on the relative location of white matter tracts extracted from diffusion tractography. The surgical plans were designed on the Brainlab system and preoperatively visualized on the Surgical Theater virtual reality SNAP platform. Volumetric assessment of EOR was obtained on the Brainlab platform and confirmed by a board-certified neuroradiologist. RESULTS Twenty adult patients (18 with IDH-wild-type glioblastomas and 2 with IDH-mutant grade IV astrocytomas) and 22 surgeries were included in the study. The cohort included both newly diagnosed (n = 17; 77%) and recurrent (n = 5; 23%) tumors. Most tumors (64%) abutted the ventricular system. The average preoperative and postoperative tumor volumes measured 33.1 ± 5.3 cm3 and 15.2 ± 5.1 cm3, respectively. The median EOR was 93%. Surgical complications included 2 patients (10%) who developed entrapment of the temporal horn, necessitating placement of a ventriculoperitoneal shunt; 1 patient (5%) who suffered a wound infection and pulmonary embolus; and 1 patient (5%) who developed pneumonia. In 2 cases (9%) patients developed new permanent visual field deficits, and in 5 cases (23%) patients experienced worsening of preoperative deficits. Preoperative neurological or cognitive deficits remained the same in 9 cases (41%) and improved in 7 (32%). The median overall survival was 14.4 months in all patients (n = 20) and in the newly diagnosed IDH-wild-type glioblastoma group (n = 16). CONCLUSIONS Deep-seated HGGs, which are surgically challenging and frequently considered inoperable, are amenable to resection through tubular retractors, with an acceptable safety profile. Such cytoreductive surgery may allow these patients to experience an overall survival comparable to those with more superficial tumors.
Collapse
Affiliation(s)
- Sabastian Hajtovic
- Departments of1Neurosurgery and.,2The City University of New York (CUNY) School of Medicine, New York, New York
| | | | | | | | | | | | | | - Gillian Harrison
- Departments of1Neurosurgery and.,4Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | - Omar Tanweer
- 6Department of Neurosurgery, Baylor College of Medicine, Houston, Texas; and
| | - Dimitris G Placantonakis
- Departments of1Neurosurgery and.,7Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
6
|
Natalizi F, Piras F, Vecchio D, Spalletta G, Piras F. Preoperative Navigated Transcranial Magnetic Stimulation: New Insight for Brain Tumor-Related Language Mapping. J Pers Med 2022; 12:1589. [PMID: 36294728 PMCID: PMC9604795 DOI: 10.3390/jpm12101589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
Preoperative brain mapping methods are particularly important in modern neuro-oncology when a tumor affects eloquent language areas since damage to parts of the language circuits can cause significant impairments in daily life. This narrative review examines the literature regarding preoperative and intraoperative language mapping using repetitive navigated transcranial magnetic stimulation (rnTMS) with or without direct electrical stimulation (DES) in adult patients with tumors in eloquent language areas. The literature shows that rnTMS is accurate in detecting preexisting language disorders and positive intraoperative mapping regions. In terms of the region extent and clinical outcomes, rnTMS has been shown to be accurate in identifying positive sites to guide resection, reducing surgery duration and craniotomy size and thus improving clinical outcomes. Before incorporating rnTMS into the neurosurgical workflow, the refinement of protocols and a consensus within the neuro-oncology community are required.
Collapse
Affiliation(s)
- Federica Natalizi
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
- Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Piras
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Daniela Vecchio
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| |
Collapse
|