1
|
Tang X, Ren Y, Zeng W, Feng X, He M, Lv Y, Li Y, He Y. MicroRNA-based interventions in aberrant cell cycle diseases: Therapeutic strategies for cancers, central nervous system disorders and comorbidities. Biomed Pharmacother 2024; 177:116979. [PMID: 38906026 DOI: 10.1016/j.biopha.2024.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Malignant tumors and central nervous system (CNS) disorders are intricately linked to a process known as "aberrant cell cycle re-entry," which plays a critical role in the progression of these diseases. Addressing the dysregulation in cell cycles offers a promising therapeutic approach for cancers and CNS disorders. MicroRNAs (miRNAs) play a crucial role as regulators of gene expression in cell cycle transitions, presenting a promising therapeutic avenue for treating these disorders and their comorbidities. This review consolidates the progress made in the last three years regarding miRNA-based treatments for diseases associated with aberrant cell cycle re-entry. It encompasses exploring fundamental mechanisms and signaling pathways influenced by miRNAs in cancers and CNS disorders, particularly focusing on the therapeutic effects of exosome-derived miRNAs. The review also identifies specific miRNAs implicated in comorbidity of cancers and CNS disorders, discusses the future potential of miRNA reagents in managing cell cycle-related diseases.
Collapse
Affiliation(s)
- Xiaojuan Tang
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China; School of Biomedical Sciences Hunan University, Hunan University, Changsha, Hunan 410012, China.
| | - Yuan Ren
- Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wen Zeng
- Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaoting Feng
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China
| | - Min He
- Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yuan Lv
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China
| | - Yongmin Li
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China
| | - Yongheng He
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
2
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
3
|
Centrón-Broco A, Rossi F, Grelloni C, Garraffo R, Dattilo D, Giuliani A, Di Timoteo G, Colantoni A, Bozzoni I, Beltran Nebot M. CircAFF1 Is a Circular RNA with a Role in Alveolar Rhabdomyosarcoma Cell Migration. Biomedicines 2023; 11:1893. [PMID: 37509532 PMCID: PMC10376778 DOI: 10.3390/biomedicines11071893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Circular RNAs (circRNAs), covalently closed RNAs that originate from back-splicing events, participate in the control of several processes, including those that occur in the development of pathological conditions such as cancer. Hereby, we describe circAFF1, a circular RNA overexpressed in alveolar rhabdomyosarcoma. Using RH4 and RH30 cell lines, a classical cell line models for alveolar rhabdomyosarcoma, we demonstrated that circAFF1 is a cytoplasmatic circRNA and its depletion impacts cell homeostasis favouring cell migration through the downregulation of genes involved in cell adhesion pathways. The presented data underline the importance of this circular RNA as a new partial suppressor of the alveolar rhabdomyosarcoma tumour progression and as a putative future therapeutic target.
Collapse
Affiliation(s)
- Alvaro Centrón-Broco
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Rossi
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Chiara Grelloni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Raffaele Garraffo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Dario Dattilo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Giuliani
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Manuel Beltran Nebot
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
4
|
Wang Y, Chen B, Fan J, Wang Z. A simple and efficient strategy for trace detection of ferroptosis-related miRNAs based on novel hydrophobic paper-based plasmonic substrate and "inverse molecular sentinel (iMS)" nanoprobes. Front Bioeng Biotechnol 2023; 11:1146111. [PMID: 36937763 PMCID: PMC10017978 DOI: 10.3389/fbioe.2023.1146111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Monitoring ferroptosis-related miRNAs is crucial for the treatment and prognosis of patients with intracerebral hemorrhage. In this work, a novel hydrophobic paper (h-paper)-based plasmonic substrate was produced by dropping DS Au nanorods with a narrow range of sizes and morphologies onto h-paper. Raman reporter molecules were adsorbed to the array surface, and surface-enhanced Raman scattering spectra at randomly selected points reveal uniform and significant SERS enhancement. Hairpin DNAs labelled with Raman reporters and hybridized with placeholder DNAs were decorated on SERS substrate to fabricate SERS biosensor. Target miRNAs initiated the "inverse Molecular Sentinel" process. During the process, PHs were removed and the conformation of HPs changed toward the hairpin structure, thus eliciting the proximity of Raman reporter to substrate and a stronger SERS signal. The proposed SERS biosensor performs well in terms of stability, reproducibility, and selectivity. The limits of detection of miR-122-5p and miR-140-5p in serum were 4.17 aM and 4.49 aM, respectively. Finally, the fabricated SERS biosensor was applied to detect miR-122-5p and miR-140-5p in ICH patients and healthy subjects, and the results obtained by SERS were consistent with the results from quantitative real-time polymerase chain reaction, revealing the accuracy of the method. This simple, rapid approach offers great potential for the simultaneous detection of miRNAs in practical clinical applications.
Collapse
Affiliation(s)
- Youwei Wang
- Department of neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Bing Chen
- Department of neurosurgery, The Affiliated hospital of Qingdao University, Qingdao, China
| | - Jiang Fan
- Department of neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Zhong Wang,
| |
Collapse
|