1
|
Yan J, Li T, Ji K, Zhou X, Yao W, Zhou L, Huang P, Zhong K. Safranal alleviates pentetrazole-induced epileptic seizures in mice by inhibiting the NF-κB signaling pathway and mitochondrial-dependent apoptosis through GSK-3β inactivation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118408. [PMID: 38823659 DOI: 10.1016/j.jep.2024.118408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/05/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saffron, a traditional Chinese medicine, is derived from Crocus sativus L. stigmas and has been reported to possess neuroprotective properties and potentially contribute to the inhibition of apoptosis and inflammation. Safranal, a potent monothyral aldehyde, is a main component of saffron that has been reported to have antiepileptic activity. However, the specific mechanism by which safranal suppresses epileptic seizures via its antiapoptotic and anti-inflammatory properties is unclear. AIM To evaluate the effect of safranal on seizure severity, inflammation, and postictal neuronal apoptosis in a mouse model of pentetrazole (PTZ)-induced seizures and explore the underlying mechanism involved. MATERIALS AND METHODS The seizure stage and latency of stage 2 and 4 were quantified to assess the efficacy of safranal in mitigating PTZ-induced epileptic seizures in mice. Electroencephalography (EEG) was employed to monitor epileptiform afterdischarges in each experimental group. The cognitive abilities and motor functions of the mice were evaluated using the novel object recognition test and the open field test, respectively. Neurons were quantified using hematoxylin and eosin staining. Additionally, bioinformatics tools were utilized to predict the interactions between safranal and specific target proteins. Glycogen synthase kinase-3β (GSK-3β), mitochondrial apoptosis-related proteins, and inflammatory factor levels were analyzed through western blotting. Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) concentrations in brain tissue were assessed by ELISA. RESULTS Safranal decreased the average seizure stage and increased the lantency of stage 2 and 4 seizures in PTZ-induced epileptic mice. Additionally, safranal exhibited neuroprotective effects on hippocampal CA1 and CA3 neurons and reduced hyperactivity caused by postictal hyperexcitability. Bioinformatics analysis revealed that safranal can bind to five specific proteins, including GSK-3β. By promoting Ser9 phosphorylation and inhibiting GSK-3β activity, safranal effectively suppressed the NF-κB signaling pathway. Moreover, the findings indicate that safranal treatment can decrease TNF-α and IL-1β levels in the cerebral tissues of epileptic mice and downregulate mitochondrial apoptosis-related proteins, including Bcl-2, Bax, Bak, Caspase 9, and Caspase 3. CONCLUSION Safranal can suppress the NF-κB signaling pathway and mitochondrial-dependent apoptosis through GSK-3β inactivation, suggesting that it is a promising therapeutic agent for epilepsy treatment.
Collapse
Affiliation(s)
- Jieping Yan
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China
| | - Tingting Li
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Kaiyue Ji
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Xinyue Zhou
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310014, China
| | - Weiyi Yao
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Department of Pharmacology, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Liujing Zhou
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310014, China
| | - Ping Huang
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Kai Zhong
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Lei Z, Shi Y, Zou J, Zhang X, Xin B, Guo D, Sun J, Luan F. A review of the polysaccharides against fatigue and the underlying mechanism. Int J Biol Macromol 2024; 275:133601. [PMID: 38969031 DOI: 10.1016/j.ijbiomac.2024.133601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Fatigue is a common physiological state that affects normal human activities. Prolonged fatigue induces a variety of diseases and seriously affects human health, so it is imperative to discover nutritional dietary supplements and treatments without side effects, among which natural anti-fatigue polysaccharides have shown great potential. Polysaccharides, a class of biomolecules produced by a variety of organisms such as plants, animals, bacteria and algae, have attracted much attention in recent years due to their anti-fatigue activity and fewer side effects. This review summarizes the classification, dosage and experimental models of polysaccharides with anti-fatigue activity obtained from different natural sources. We also review the fatigue-relieving effects of these polysaccharides through mechanisms such as modulating oxidative damage, regulating energy metabolism and influencing intestinal flora, as well as the effects of molecular weights, monosaccharide compositions, structural features and chemical modifications of the polysaccharides on their anti-fatigue activities to support their potential application value in functional foods and pharmaceuticals. New valuable insights for future research on natural polysaccharides are also presented in the field of natural production of bio-based functional materials, functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Ziwen Lei
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
3
|
Cui Q, Qin N, Zhang Y, Miao Y, Xie L, Ma X, Zhang Z, Xie P. Neuroprotective effects of annexin A1 tripeptide in rats with sepsis-associated encephalopathy. Biotechnol Appl Biochem 2024; 71:701-711. [PMID: 38409880 DOI: 10.1002/bab.2569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is characterized by high incidence and mortality rates, with limited treatment options available. The underlying mechanisms and pathogenesis of SAE remain unclear. Annexin A1 (ANXA1), a membrane-associated protein, is involved in various in vivo pathophysiological processes. This study aimed to explore the neuroprotective effects and mechanisms of a novel bioactive ANXA1 tripeptide (ANXA1sp) in SAE. Forty Sprague-Dawley rats were randomly divided into four groups (n = 10 each): control, SAE (intraperitoneal injection of lipopolysaccharide), vehicle (SAE + normal saline), and ANXA1sp (SAE + ANXA1sp) groups. Changes in serum inflammatory factors (interleukin-6 [IL-6], tumor necrosis factor-α [TNF-α]), hippocampal reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) levels were measured. The Morris water maze and Y maze tests were used to assess learning and memory capabilities in the rats. Further, changes in peroxisome proliferator-activated receptor-gamma (PPAR-γ) and apoptosis-related protein expression were detected using western blot. The IL-6, TNF-α, and ROS levels were significantly increased in the SAE group compared with the levels in the control group. Intraperitoneal administration of ANXA1sp led to a significant decrease in the IL-6, TNF-α, and ROS levels (p < 0.05). Compared with the SAE group, the ANXA1sp group exhibited reduced escape latency on day 5, a significant increase in the number of platform crossings and the percent spontaneous alternation, and significantly higher hippocampal MMP and ATP levels (p < 0.05). Meanwhile, the expression level of PPAR-γ protein in the ANXA1sp group was significantly increased compared with that in the other groups (p < 0.05). The expressions of apoptosis-related proteins (nuclear factor-kappa B [NF-κB], Bax, and Caspase-3) in the SAE and vehicle groups were significantly increased, with a noticeable decrease in Bcl-2 expression, compared with that noted in the control group. Moreover, the expressions of NF-κB, Bax, and Caspase-3 were significantly decreased in the ANXA1sp group, and the expression of Bcl-2 was markedly increased (p < 0.05). ANXA1sp can effectively reverse cognitive impairment in rats with SAE. The neuroprotective effect of ANXA1sp may be attributed to the activation of the PPAR-γ pathway, resulting in reduced neuroinflammatory response and inhibition of apoptosis.
Collapse
Affiliation(s)
- Qiao Cui
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Nannan Qin
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Yonghan Zhang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Leiyu Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Xinglong Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Zhiquan Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Peng Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Guo L, Zhao Y, Kong Z, Liu R, Liu P. Protective effects of myricetin and morin on neurological damage in Aβ 1-42/Al 3+ -induced Alzheimer's disease model of rats. J Chem Neuroanat 2024; 137:102404. [PMID: 38423257 DOI: 10.1016/j.jchemneu.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease (AD) is a degenerative neurological disorder with unclear pathogenesis. Single-target drugs have very limited efficacy in treating AD, but synthetic multi-target drugs have poor efficacy and safety. Therefore, finding suitable natural multi-target drugs against AD is of great interest for research studies. We chose two flavonols, myricetin and morin, for the relevant study. In this study, we used microinjection of Aβ1-42 oligomers into the CA1 region of rat hippocampus, combined with gavage of Aluminum chloride hexahydrate (AlCl3·6H2O) solution to establish AD rat models, and myricetin and morin were selected as intervening drugs to explore the protective effects against neurological impairment. Experimental results showed that myricetin or morin could reduce the production of Aβ, Tubulin-associated unit (Tau), and Phosphorylated tubulin-associated unit (p-Tau), down-regulate the expression of relevant inflammatory factors, reduce hippocampal cell apoptosis in rats. There was a significant increase in the activity of adenosine triphosphatase, catalase, total superoxide dismutase, and the content of glutathione in the brain tissue. However, the content of malondialdehyde, inducible nitric oxide synthase, and the activity of acetylcholinesterase were decreased in the brain tissue. These two flavonols can regulate the imbalance of monoamine and amino acid neurotransmitter levels. In conclusion, Myricetin or morin can effectively improve learning and memory dysfunction in AD rats induced by Aβ1-42/Al3+ through anti-oxidative stress and anti-apoptotic features.
Collapse
Affiliation(s)
- Linli Guo
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanan Zhao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhengqiao Kong
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Ruihua Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Yuan M, Jing G, Kong Q, Ming T, Zuo J, Wang Q, Feng Y, Liu W, Wu X, Xia Z. TIPE2 ameliorates neuroinflammation and cognitive impairment in sepsis-associated encephalopathy through regulating RhoA/ROCK2-NF-κB signaling pathway. Biochem Pharmacol 2023; 217:115816. [PMID: 37748665 DOI: 10.1016/j.bcp.2023.115816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is an acute brain dysfunction induced by systemic inflammation caused by sepsis and is one of the most common types of encephalopathy in intensive care units. Deteriorative neuroinflammation is closely related to the development of brain injury, which often transforms into common pathological manifestations in patients with severe sepsis. Therefore, taking necessary preventive and protective measures for potential brain injury and promptly reducing neuroinflammatory injury is necessary to improve the long-term prognoses of patients. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) can play a significant protective role in septic lung injury, but studies on its expression and role in neurological diseases are rare. In the present study, we found that TIPE2 can expressed in microglia and ameliorate brain injury caused by SAE by suppressing neuroinflammation. The RhoA/ROCK2 pathway is the central coordinator of tissue injury response, and the activation of RhoA participates in the lipopolysaccharide-induced activation of the nuclear factor kappa B (NF-κB) signaling pathway. The activation of RhoA and phosphorylation of NF-κB was enhanced after TIPE2 deficiency. Importantly, TIPE2 negatively regulates inflammatory responses in vivo and in vitro and plays a protective role in SAE by inhibiting the activation of RhoA/ROCK2-NF-κB signaling pathways. The ultimate aim of our proposed project is to provide a theoretical basis for the development of a novel strategy for the early prevention and therapy of SAE.
Collapse
Affiliation(s)
- Min Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guoqing Jing
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qian Kong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tingqian Ming
- Department of Anesthesiology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Jing Zuo
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qian Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yong Feng
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wanhong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Yang Z, Zhang F, Abdul M, Jiang J, Li Y, Li Y, Yin C, Xing Y, Liu S, Lu C. Tumor necrosis factor-α-induced protein 8-like 2 alleviates morphine antinociceptive tolerance through reduction of ROS-mediated apoptosis and MAPK/NF-κB signaling pathways. Neuropharmacology 2023:109667. [PMID: 37451333 DOI: 10.1016/j.neuropharm.2023.109667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2022] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Chronic morphine tolerance is a repulsive barrier to the clinical treatment of pain. Whereas the underlying molecular mechanisms of morphine tolerance remain unknown. Here, we proposed that tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) is an essential control point regarding the progression of chronic morphine tolerance. We found that TIPE2 levels in the lumbar spinal cord were significantly downregulated in the morphine tolerance mouse model. Specifically, decreased TIPE2 by morphine tolerance was primarily expressed in spinal neurons, while increased expression of spinal TIPE2 distinctly attenuated the chronic morphine antinociceptive tolerance and tolerance-associated hyperalgesia. We also observed that increased expression of spinal TIPE2 significantly reduced morphine tolerance-induced neuronal ROS production and apoptosis, along with the activation of MAPKs and NF-κB signaling pathways. Moreover, the increased TIPE2 expression inhibited neuronal activation and glial reactivity in the spinal dorsal horn after chronic morphine exposure. Additionally, TIPE2 overexpression in cultured SH-SY5Y cells significantly suppressed ROS production and apoptosis in response to morphine challenge. Therefore, we can conclude that the upregulation of spinal TIPE2 may attenuate the morphine antinociceptive tolerance via TIPE2-dependent downregulation of neuronal ROS, inhibition of neuronal apoptosis, suppression of MAPKs and NF-κB activation. TIPE2 may be a potential strategy for preventing morphine tolerance in the future studies and clinical settings. Schematic diagram for the proposed mechanisms of TIPE2 regulates morphine antinociceptive tolerance. TIPE2 may alleviate morphine antinociceptive tolerance by regulating MAPK/NF-κB signaling pathways and apoptosis, which might be associated with ROS production.
Collapse
Affiliation(s)
- Zhong Yang
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feifei Zhang
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mannan Abdul
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China; School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinhong Jiang
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanqiang Li
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yeqi Li
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cui Yin
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanhong Xing
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Su Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chen Lu
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|