1
|
Hamila SA, Ooms LM, Rodgers SJ, Mitchell CA. The INPP4B paradox: Like PTEN, but different. Adv Biol Regul 2021; 82:100817. [PMID: 34216856 DOI: 10.1016/j.jbior.2021.100817] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Cancer is a complex and heterogeneous disease marked by the dysregulation of cancer driver genes historically classified as oncogenes or tumour suppressors according to their ability to promote or inhibit tumour development and growth, respectively. Certain genes display both oncogenic and tumour suppressor functions depending on the biological context, and as such have been termed dual-role cancer driver genes. However, because of their context-dependent behaviour, the tumourigenic mechanism of many dual-role genes is elusive and remains a significant knowledge gap in our effort to understand and treat cancer. Inositol polyphosphate 4-phosphatase type II (INPP4B) is an emerging dual-role cancer driver gene, primarily known for its role as a negative regulator of the phosphoinositide 3-kinase (PI3K)/AKT signalling pathway. In response to growth factor stimulation, class I PI3K generates PtdIns(3,4,5)P3 at the plasma membrane. PtdIns(3,4,5)P3 can be hydrolysed by inositol polyphosphate 5-phosphatases to generate PtdIns(3,4)P2, which, together with PtdIns(3,4,5)P3, facilitates the activation of AKT to promote cell proliferation, survival, migration, and metabolism. Phosphatase and tensin homology on chromosome 10 (PTEN) and INPP4B are dual-specificity phosphatases that hydrolyse PtdIns(3,4,5)P3 and PtdIns(3,4)P2, respectively, and thus negatively regulate PI3K/AKT signalling. PTEN is a bona fide tumour suppressor that is frequently lost in human tumours. INPP4B was initially characterised as a tumour suppressor akin to PTEN, and has been implicated as such in a number of cancers, including prostate, thyroid, and basal-like breast cancers. However, evidence has since emerged revealing INPP4B as a paradoxical oncogene in several malignancies, with increased INPP4B expression reported in AML, melanoma and colon cancers among others. Although the tumour suppressive function of INPP4B has been mostly ascribed to its ability to negatively regulate PI3K/AKT signalling, its oncogenic function remains less clear, with proposed mechanisms including promotion of PtdIns(3)P-dependent SGK3 signalling, inhibition of PTEN-dependent AKT activation, and enhancing DNA repair mechanisms to confer chemoresistance. Nevertheless, research is ongoing to identify the factors that dictate the tumourigenic output of INPP4B in different human cancers. In this review we discuss the dualistic role that INPP4B plays in the context of cancer development, progression and treatment, drawing comparisons to PTEN to explore how their similarities and, importantly, their differences may account for their diverging roles in tumourigenesis.
Collapse
Affiliation(s)
- Sabryn A Hamila
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Samuel J Rodgers
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
2
|
Mangialardi EM, Chen K, Salmon B, Vacher J, Salmena L. Investigating the duality of Inpp4b function in the cellular transformation of mouse fibroblasts. Oncotarget 2019; 10:6378-6390. [PMID: 31695845 PMCID: PMC6824866 DOI: 10.18632/oncotarget.27293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/19/2019] [Indexed: 11/25/2022] Open
Abstract
Inositol Polyphosphate 4-Phosphatase, Type II (INPP4B) is a tumour suppressor in breast, ovarian, prostate, thyroid and other cancers, attributed to its ability to reduce oncogenic Akt-signaling. However, emerging studies show that INPP4B also has tumour-promoting properties in cancers including acute myeloid leukemia, colon cancer, melanoma and breast cancer. Together these findings suggest that INPP4B may be a context dependent cancer gene. Whether INPP4B functions solely in a tumour suppressing or tumour promoting manner, or both in non-transformed cells is currently not clear. In this study, consequences of deficiency and overexpression of INPP4B on cellular transformation was investigated using a mouse embryonic fibroblast (MEF) model of cellular transformation. We observed that neither deficiency nor overexpression of INPP4B was sufficient to induce neoplastic transformation, alone or in combination with H-Ras V12 or E1A overexpression. However, Inpp4b-deficiency did cooperate with SV40 T-Large-mediated cellular transformation, a finding which was associated with increased phosphorylated-Akt levels. Transformation and phosphorylated-Akt levels were dampened upon overexpression of INPP4B in SV40 T-Large-MEF. Together, our findings support a model where INPP4B function suppresses transformation mediated by SV40 T-Large, but is inconsequential for Ras and E1A mediated transformation.
Collapse
Affiliation(s)
| | - Keyue Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Brittany Salmon
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jean Vacher
- Institut de Recherches Cliniques de Montréal, Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Kaposi Sarcoma in Association With an Extracavitary Primary Effusion Lymphoma Showing Unusual Intravascular Involvement: Report of a Case Harboring a FAM175A Germline Mutation. Am J Dermatopathol 2019; 42:55-60. [PMID: 31361614 DOI: 10.1097/dad.0000000000001491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Primary effusion lymphoma (PEL) is a rare form of aggressive B-cell lymphoma characterized by a malignant serous effusion involving body cavities. It usually associated with human herpes virus-8 (HHV-8) and coexpression of Epstein-Barr virus and mostly affects patients with HIV. We report a rare case of cutaneous PEL with an unusual intravascular presentation, combined with Kaposi sarcoma involving the skin, lung, and gastrointestinal tract. The molecular genetic analysis of the sarcoma and lymphoma components, using next-generation sequencing was performed. The patient was a 67-year-old man who presented with multiple cutaneous tumors and mass in the left lung. He died 17 hours after the admission to the hospital. At autopsy, in addition to the cutaneous lesions, tumors in the left lung and gastrointestinal mucosa were detected, and no effusions in the body cavities were seen. The biopsy from the cutaneous lesions, pulmonary, and intestinal tumors revealed histological and immunohistochemical features of Kaposi sarcoma. In addition, the skin biopsy specimens contained a diffuse infiltrate composed of large pleomorphic cells, with focal intravascular growth that were negative for pan B-cell markers, weakly positive for CD38 and CD138 but expressed CD3, HHV-8, and Epstein-Barr virus. Molecular genetic studies in this specimen revealed monoclonal rearrangements of the IgH gene. The diagnosis of PEL, solid variant, was made. Next-generation sequencing analysis of the tumorous and normal tissue detected a pathogenic germline mutation of the FAM175A gene and somatic mutations in BRCA2 and RAD51B (in both sarcoma and lymphoma specimens), and INPP4B and RICTOR (in lymphoma specimen only).
Collapse
|
4
|
Gupta I, Sareyeldin RM, Al-Hashimi I, Al-Thawadi HA, Al Farsi H, Vranic S, Al Moustafa AE. Triple Negative Breast Cancer Profile, from Gene to microRNA, in Relation to Ethnicity. Cancers (Basel) 2019; 11:cancers11030363. [PMID: 30871273 PMCID: PMC6468678 DOI: 10.3390/cancers11030363] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most frequent cause of cancer-related deaths among women worldwide. It is classified into four major molecular subtypes. Triple-negative breast cancers (TNBCs), a subgroup of breast cancer, are defined by the absence of estrogen and progesterone receptors and the lack of HER-2 expression; this subgroup accounts for ~15% of all breast cancers and exhibits the most aggressive metastatic behavior. Currently, very limited targeted therapies exist for the treatment of patients with TNBCs. On the other hand, it is important to highlight that knowledge of the molecular biology of breast cancer has recently changed the decision-making process regarding the course of cancer therapies. Thus, a number of new techniques, such as gene profiling and sequencing, proteomics, and microRNA analysis have been used to explore human breast carcinogenesis and metastasis including TNBC, which consequently could lead to new therapies. Nevertheless, based on evidence thus far, genomics profiles (gene and miRNA) can differ from one geographic location to another as well as in different ethnic groups. This review provides a comprehensive and updated information on the genomics profile alterations associated with TNBC pathogenesis associated with different ethnic backgrounds.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | | | - Israa Al-Hashimi
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | | | - Halema Al Farsi
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | - Semir Vranic
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
- Biomedical Research Centre, Qatar University, Doha P.O Box: 2713, Qatar.
| |
Collapse
|
5
|
Dzneladze I, Woolley JF, Rossell C, Han Y, Rashid A, Jain M, Reimand J, Minden MD, Salmena L. SubID, a non-median dichotomization tool for heterogeneous populations, reveals the pan-cancer significance of INPP4B and its regulation by EVI1 in AML. PLoS One 2018; 13:e0191510. [PMID: 29415082 PMCID: PMC5802890 DOI: 10.1371/journal.pone.0191510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/05/2018] [Indexed: 01/08/2023] Open
Abstract
Our previous studies demonstrated that INPP4B, a member of the PI3K/Akt signaling pathway, is overexpressed in a subset of AML patients and is associated with lower response to chemotherapy and shorter survival. INPP4B expression analysis in AML revealed a right skewed frequency distribution with 25% of patients expressing significantly higher levels than the majority. The 75% low/25% high cut-off revealed the prognostic power of INPP4B expression status in AML, which would not have been apparent with a standard median cut-off approach. Our identification of a clinically relevant non-median cut-off for INPP4B indicated a need for a generalizable non-median dichotomization approach to optimally study clinically relevant genes. To address this need, we developed Subgroup Identifier (SubID), a tool which examines the relationship between a continuous variable (e.g. gene expression), and a test parameter (e.g. CoxPH or Fisher’s exact P values). In our study, Fisher’s exact SubID was used to reveal EVI1 as a transcriptional regulator of INPP4B in AML; a finding which was validated in vitro. Next, we used CoxPH SubID to conduct a pan-cancer analysis of INPP4B’s prognostic significance. Our analysis revealed that INPP4Blow is associated with shorter survival in kidney clear cell, liver hepatocellular, and bladder urothelial carcinomas. Conversely, INPP4Blow was shown to be associated with increased survival in pancreatic adenocarcinoma in three independent datasets. Overall, our study describes the development and application of a novel subgroup identification tool used to identify prognostically significant rare subgroups based upon gene expression, and for investigating the association between a gene with skewed frequency distribution and potentially important upstream and downstream genes that relate to the index gene.
Collapse
Affiliation(s)
- Irakli Dzneladze
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute of Cancer Research, Toronto, Canada
| | - John F. Woolley
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Carla Rossell
- Ontario Institute of Cancer Research, Toronto, Canada
| | - Youqi Han
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ayesha Rashid
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Michael Jain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jüri Reimand
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute of Cancer Research, Toronto, Canada
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- * E-mail: (MDM); (LS)
| | - Leonardo Salmena
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- * E-mail: (MDM); (LS)
| |
Collapse
|
6
|
Han W, Zhang C, Cao FY, Cao F, Jiang L, Ding HZ. Prognostic and clinicopathological value of NM23 expression in patients with breast cancer: A systematic review and meta-analysis. Curr Probl Cancer 2016; 41:80-93. [PMID: 28161101 DOI: 10.1016/j.currproblcancer.2016.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/23/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022]
Abstract
It is hypothesized that, NM23, as a metastasis suppressor gene, may be a good indicator of patients with breast cancer in most reports. The aim of our meta-analysis was to determine the prognostic value of NM23 in patients with breast cancer synthetically, by searching 3 databases, PubMed, EMBASE, and Web of Science, for relevant articles. The inclusion criteria, exclusion criteria, and the standard-of-quality assessment were used according to a previous protocol. The pooled odd ratios (ORs) and corresponding 95% CI were calculated to assess the primary end point, survival data, and the secondary end point, associations between NM23 expression and clinicopathological factors. Finally, funnel plots and Egger׳s linear regression test were used to assess the potential publication bias. Overall, 792 articles were retrieved in the initial search of databases, and 4968 patients were eventually pooled from 26 available studies selected out by 2 independent reviewers. The incorporative OR showed that elevated NM23 expression was associated with better overall survival (OR = 0.62; 95% CI: 0.52-0.74; P < 0.00001; I2 = 0%; Ph = 0.46). In disease-free survival, we also obtained a good prognosis (OR = 0.30; 95% CI: 0.18-0.48; P < 0.00001; I2 = 46%; Ph = 0.13). In addition, high-NM23 expression was correlated with well or moderate histologic grade, negative lymph node metastasis, and early tumor staging. Furthermore, publication bias was detected in overall survival but not in disease-free survival, and it could also be verified by Egger׳s test (P = 0.009 and P = 0.687, respectively). These results implied that NM23 might be an indicator of good prognosis in patients with breast cancer, although further researches need to be performed to confirm the prognostic value of NM23.
Collapse
Affiliation(s)
- Wei Han
- Department of General Surgery, Kunshan First People׳s Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, P.R. China
| | - Cong Zhang
- Department of Pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Jiangsu, P.R. China
| | - Fei-Yun Cao
- Medical College, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Fang Cao
- Department of General Surgery, Kunshan First People׳s Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, P.R. China
| | - Lai Jiang
- Basic Medical College, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hou-Zhong Ding
- Department of General Surgery, Kunshan First People׳s Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, P.R. China.
| |
Collapse
|