1
|
Serambeque B, Mestre C, Correia-Barros G, Teixo R, Marto CM, Gonçalves AC, Caramelo F, Silva I, Paiva A, Beck HC, Carvalho AS, Botelho MF, Carvalho MJ, Matthiesen R, Laranjo M. Influence of Aldehyde Dehydrogenase Inhibition on Stemness of Endometrial Cancer Stem Cells. Cancers (Basel) 2024; 16:2031. [PMID: 38893151 PMCID: PMC11171353 DOI: 10.3390/cancers16112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Endometrial cancer is one of the most common gynaecological malignancies. Although often diagnosed at an early stage, there is a subset of patients with recurrent and metastatic disease for whom current treatments are not effective. Cancer stem cells (CSCs) play a pivotal role in triggering tumorigenesis, disease progression, recurrence, and metastasis, as high aldehyde dehydrogenase (ALDH) activity is associated with invasiveness and chemotherapy resistance. Therefore, this study aimed to evaluate the effects of ALDH inhibition in endometrial CSCs. ECC-1 and RL95-2 cells were submitted to a sphere-forming protocol to obtain endometrial CSCs. ALDH inhibition was evaluated through ALDH activity and expression, sphere-forming capacity, self-renewal, projection area, and CD133, CD44, CD24, and P53 expression. A mass spectrometry-based proteomic study was performed to determine the proteomic profile of endometrial cancer cells upon N,N-diethylaminobenzaldehyde (DEAB). DEAB reduced ALDH activity and expression, along with a significant decrease in sphere-forming capacity and projection area, with increased CD133 expression. Additionally, DEAB modulated P53 expression. Endometrial cancer cells display a distinct proteomic profile upon DEAB, sharing 75 up-regulated and 30 down-regulated proteins. In conclusion, DEAB inhibits ALDH activity and expression, influencing endometrial CSC phenotype. Furthermore, ALDH18A1, SdhA, and UBAP2L should be explored as novel molecular targets for endometrial cancer.
Collapse
Affiliation(s)
- Beatriz Serambeque
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (G.C.-B.); (R.T.); (C.M.M.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
| | - Catarina Mestre
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (G.C.-B.); (R.T.); (C.M.M.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
| | - Gabriela Correia-Barros
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (G.C.-B.); (R.T.); (C.M.M.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
| | - Ricardo Teixo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (G.C.-B.); (R.T.); (C.M.M.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
| | - Carlos Miguel Marto
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (G.C.-B.); (R.T.); (C.M.M.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
- Univ Coimbra, Institute of Experimental Pathology, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Oncobiology and Hematology (LOH) and University Clinics of Hematology and Oncology, Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Francisco Caramelo
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO) and Laboratory of Biostatistics and Medical Informatics (LBIM), Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Isabel Silva
- Cytometry Operational Management Unit, Clinical Pathology Department, Unidade de Saúde Local de Coimbra, 3004-561 Coimbra, Portugal;
| | - Artur Paiva
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
- Cytometry Operational Management Unit, Clinical Pathology Department, Unidade de Saúde Local de Coimbra, 3004-561 Coimbra, Portugal;
- Polytechnic Institute of Coimbra, Coimbra Health School, Laboratory Biomedical Sciences, 3045-043 Coimbra, Portugal
| | - Hans C. Beck
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense, Denmark;
| | - Ana Sofia Carvalho
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal; (A.S.C.); (R.M.)
| | - Maria Filomena Botelho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (G.C.-B.); (R.T.); (C.M.M.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
- Univ Coimbra, Institute of Experimental Pathology, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Maria João Carvalho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (G.C.-B.); (R.T.); (C.M.M.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Universitary Clinic of Gynecology, Faculty of Medicine, 3004-561 Coimbra, Portugal
- Gynecology Service, Department of Gynecology, Obstetrics, Reproduction and Neonatology, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal
| | - Rune Matthiesen
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal; (A.S.C.); (R.M.)
| | - Mafalda Laranjo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (G.C.-B.); (R.T.); (C.M.M.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
2
|
Wang F, Luo R, Xin H, Zhang Y, Córdova Wong BJ, Wang W, Lei J. Hypoxia-stimulated tumor therapy associated with the inhibition of cancer cell stemness. Biomaterials 2020; 263:120330. [DOI: 10.1016/j.biomaterials.2020.120330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022]
|
3
|
Gaio E, Conte C, Esposito D, Reddi E, Quaglia F, Moret F. CD44 Targeting Mediated by Polymeric Nanoparticles and Combination of Chlorine TPCS 2a-PDT and Docetaxel-Chemotherapy for Efficient Killing of Breast Differentiated and Stem Cancer Cells In Vitro. Cancers (Basel) 2020; 12:E278. [PMID: 31979218 PMCID: PMC7072409 DOI: 10.3390/cancers12020278] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
The presence of rare but highly tumorigenic cancer stem cells (CSCs) within the tumors is recognized as one of the major reasons of failure of conventional chemotherapies, mainly attributed to the development of drug resistance and increasing metastatic potential. Here, we propose a therapeutic strategy based on the simultaneous delivery of docetaxel (DTX) and the photosensitizer meso-tetraphenyl chlorine disulfonate (TPCS2a) using hyaluronic acid (HA) coated polymeric nanoparticles (HA-NPs) for the targeting and killing of CD44 over-expressing breast cancer (BC) cells, both differentiated and CSCs (CD44high/CD24low population), thus combining chemotherapy and photodynamic therapy (PDT). Using the CD44high MDA-MB-231 and the CD44low MCF-7 cells, we demonstrated the occurrence of CD44-mediated uptake of HA-NPs both in monolayers and mammosphere cultures enriched in CSCs. Cell treatments showed that combination therapy using co-loaded NPs (HA@DTX/TPCS2a-NPs) had superior efficacy over monotherapies (HA@DTX-NPs or HA@TPCS2a-NPs) in reducing the self-renewal capacity, measured as mammosphere formation efficiency, and in eradicating the CSC population evaluated with aldehyde dehydrogenase activity assay and CD44/CD24 immunostaining. In summary, these in vitro studies demonstrated for the first time the potential of the combination of DTX-chemotherapy and TPCS2a-PDT for killing CSCs using properly designed NPs.
Collapse
Affiliation(s)
- Elisa Gaio
- Department of Biology, University of Padova, 35121 Padova, Italy; (E.G.); (E.R.)
| | - Claudia Conte
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy; (C.C.); (D.E.); (F.Q.)
| | - Diletta Esposito
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy; (C.C.); (D.E.); (F.Q.)
| | - Elena Reddi
- Department of Biology, University of Padova, 35121 Padova, Italy; (E.G.); (E.R.)
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy; (C.C.); (D.E.); (F.Q.)
| | - Francesca Moret
- Department of Biology, University of Padova, 35121 Padova, Italy; (E.G.); (E.R.)
| |
Collapse
|
4
|
Lin YY, Wang CY, Phan NN, Chiao CC, Li CY, Sun Z, Hung JH, Chen YL, Yen MC, Weng TY, Hsu HP, Lai MD. PODXL2 maintains cellular stemness and promotes breast cancer development through the Rac1/Akt pathway. Int J Med Sci 2020; 17:1639-1651. [PMID: 32669966 PMCID: PMC7359396 DOI: 10.7150/ijms.46125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
The cluster of differentiation 34 (CD34) family, which includes CD34, podocalyxin-like protein 1 (PODXL), and PODXL2, are type-I transmembrane sialomucins and markers of hematopoietic stem cells (HSCs) and vascular-associated tissues. CD34 family proteins are expressed by endothelial cells and hematopoietic precursors. PODXL is well known to be associated with invadopodia formation and to promote the epithelial-mesenchymal transition, tumor migration and invasion. PODXL expression was correlated with poor survival of cancer patients. However, the role of PODXL2 in cancer has been less fully explored. To reveal the novel role of PODXL2 in breast cancer, the present study evaluated PODXL2 levels in relation to clinical outcomes of cancer patients by performing a bioinformatics analysis using the Oncomine database, Kaplan-Meier plots, and the CCLE database. Empirical validation of bioinformatics predictions was conducted utilizing the short hairpin (sh)-RNA silencing method for PODXL2 in the BT474 invasive ductal breast carcinoma cell line. The bioinformatics analysis revealed that PODXL2 overexpression was correlated with poor survival of breast cancer patients, suggesting an oncogenic role of PODXL2 in breast carcinoma. In a validation experiment, knockdown of PODXL2 in BT474 cells slightly influenced cell proliferation, suppressed migration, and inhibited expressions of downstream molecules, including Ras-related C3 botulinum toxin substrate 1 (Rac1), phosphorylated (p)-Akt (S473), and p-paxillin (Y31) proteins. In addition, knockdown of PODXL2 reduced expression levels of cancer stem cell (CSC) markers, including Oct-4 and Nanog, and the breast CSC marker aldehyde dehydrogenase 1 (ALDH1). Collectively, our present study demonstrated that PODXL2 plays a crucial role in cancer development and could serve as a potential prognostic biomarker in breast cancer patients.
Collapse
Affiliation(s)
- Yi-Yi Lin
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Chung-Chieh Chiao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chung-Yen Li
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zhengda Sun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Yi-Ling Chen
- Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Yang Weng
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.,Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
5
|
Velasco-Velázquez MA, Velázquez-Quesada I, Vásquez-Bochm LX, Pérez-Tapia SM. Targeting Breast Cancer Stem Cells: A Methodological Perspective. Curr Stem Cell Res Ther 2019; 14:389-397. [PMID: 30147014 DOI: 10.2174/1574888x13666180821155701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/01/2018] [Accepted: 08/09/2018] [Indexed: 02/07/2023]
Abstract
Cancer Stem Cells (CSCs) constitute a subpopulation at the top of the tumor cell hierarchy that contributes to tumor heterogeneity and is uniquely capable of seeding new tumors. Because of their biological properties, CSCs have been pointed out as therapeutic targets for the development of new therapies against breast cancer. The identification of drugs that selectively target breast CSCs requires a clear understanding of their biological functions and the experimental methods to evaluate such hallmarks. Herein, we review the methods to study breast CSCs properties and discuss their value in the preclinical evaluation of CSC-targeting drugs.
Collapse
Affiliation(s)
- Marco A Velasco-Velázquez
- Departamento de Farmacologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Ciudad de Mexico, Mexico.,Unidad Periférica de Investigación en Biomedicina Traslacional, Facultad de Medicina, UNAM, Ciudad de México, México
| | - Inés Velázquez-Quesada
- Departamento de Farmacologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Ciudad de Mexico, Mexico.,Unidad de Desarrollo e Investigacion en Bioprocesos, ENCB, Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - Luz X Vásquez-Bochm
- Departamento de Farmacologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Ciudad de Mexico, Mexico.,Posgrado en Ciencias Químicas, UNAM, Ciudad de México, México
| | - Sonia M Pérez-Tapia
- Unidad de Desarrollo e Investigacion en Bioprocesos, ENCB, Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| |
Collapse
|
6
|
Gu J, Xu T, Huang QH, Zhang CM, Chen HY. HMGB3 silence inhibits breast cancer cell proliferation and tumor growth by interacting with hypoxia-inducible factor 1α. Cancer Manag Res 2019; 11:5075-5089. [PMID: 31213919 PMCID: PMC6549700 DOI: 10.2147/cmar.s204357] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/10/2019] [Indexed: 01/18/2023] Open
Abstract
Background: Breast cancer is the most common malignant tumor that affects women with higher incidence. High-mobility group box 3 (HMGB3) plays critical functions in DNA repair, recombination, transcription and replication. This study aimed to investigate the effects of HMGB3 silence on mammosphere formation and tumor growth of breast cancer. Methods: LV5-HMGB3 and LV3-siHMGB3 vectors were transfected into MCF10A, MDA-MB-231, HCC1937, ZR-75-1 and MCF7 cells. Cell counting kit-8 (CCK-8) assay was used to evaluate cell proliferation. Xenograft tumor mice model was established by injection of MDA-MB-231. qRT-PCR and western blot were used to examine the expression of Nanog, Sox2 and OCT-4. Mammosphere forming assay was employed to evaluate mammosphere formation both in vivo and in vitro. Dual luciferase assay was utilized to verify the interaction between HMGB3 and hypoxia-inducible factor 1α (HIF1α). CD44+/CD24− was assessed with flow cytometry. Results: HMGB3 expression was higher significantly (p<0.05) in cancer cells compared to normal cells. HMGB3 overexpression significantly (p<0.05) enhanced and HMGB3 silence reduced cell proliferative mice compared to MCF10A and MDA-MB-231, respectively. HMGB3 overexpression enhanced and HMGB3 silence inhibited mammosphere formation. HMGB3 overexpression upregulated and HMGB3 silence downregulated Nanog, SOX2 and OCT-4 genes/proteins in MCF10A and MDA-MB-231 cells, respectively. HMGB3 silence reduced CD44+/CD24− levels in cancer cells. Silence of HMGB3 strengthened reductive effects of PTX on tumor sizes, iPSC biomarkers and mammosphere amounts in xenograft tumor mouse models. HMGB3 silence inhibited mammoshpere formation, cell proliferation and CD44+CD24− by interacting with HIF1α. Conclusion: HMGB3 silence could inhibit the cell proliferation in vitro and suppress tumor growth in vivo levels. The antitumor effects of HMGB3 silence were mediated by interacting with the HIF1α.
Collapse
Affiliation(s)
- Jun Gu
- Department of Health Check-Up Center, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Tao Xu
- Department of Health Check-Up Center, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Qin-Hua Huang
- Department of Health Check-Up Center, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Chu-Miao Zhang
- Department of Health Check-Up Center, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Hai-Yan Chen
- Department of Health Check-Up Center, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| |
Collapse
|
7
|
Chen JH, T H Wu A, T W Tzeng D, Huang CC, Tzeng YM, Chao TY. Antrocin, a bioactive component from Antrodia cinnamomea, suppresses breast carcinogenesis and stemness via downregulation of β-catenin/Notch1/Akt signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:70-78. [PMID: 30599914 DOI: 10.1016/j.phymed.2018.09.213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/23/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND We identified increased β-catenin and Atk expression was associated with drug resistance and poor prognosis in breast cancer patients using public databases. Antrocin treatment suppressed breast tumorigenesis and stemness properties. HYPOTHESIS/PURPOSE We aimed to provide preclinical evidence for antrocin, an active component of Antrodia cinnamomea, as a potential small-molecule drug for treating drug-resistant breast cancer. METHODS Various in vitro assays including SRB, Boyden chamber, colony formation, drug combination index and tumor sphere generation were used to determine the anti-cancer and stemness effects of antrocin. Mouse xenograft models were used to evaluate antrocin's effect in vivo. RESULTS Antrocin treatment suppressed the viability, migration colony formation and mammosphere generation. Antrocin-mediated anti-cancer effects were associated with the decreased expression of oncogenic and stemness markers such as β-catenin, Akt and Notch1. A sequential regimen of antrocin and paclitaxel synergistically inhibit breast cancer viability in vitro and in vivo. CONCLUSION Our preclinical evidence supports antrocin's ability of inhibiting tumorigenic and stemness properties in breast cancer cells. Further develop of antrocin should be encouraged; the combined use of antrocin and paclitaxel may also be considered for future clinical trials.
Collapse
Affiliation(s)
- Jia-Hong Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Hematology/Oncology, Department of Medicine, Tri-Service General Hospital, National Defence Medical Center, Taipei, Taiwan
| | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defence Medical Center, Taipei, Taiwan
| | - David T W Tzeng
- School of Life Sciences, The Chinese University of Hong Kong
| | - Chi-Cheng Huang
- Department of Surgery, Cathay General Hospital SiJhih, New Taipei City, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Yew-Min Tzeng
- Center for General Education, National Taitung University, Taitung 95092, Taiwan; Department of Life Science, National Taitung University, Taitung, Taiwan.
| | - Tsu-Yi Chao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan.
| |
Collapse
|