1
|
Jaikuna T, Wilson F, Azria D, Chang-Claude J, De Santis MC, Gutiérrez-Enríquez S, van Herk M, Hoskin P, Kotzki L, Lambrecht M, Lingard Z, Seibold P, Seoane A, Sperk E, Paul Symonds R, Talbot CJ, Rancati T, Rattay T, Reyes V, Rosenstein BS, de Ruysscher D, Vega A, Veldeman L, Webb A, West CML, Aznar MC, Vasquez Osorio E. Optimising inter-patient image registration for image-based data mining in breast radiotherapy. Phys Imaging Radiat Oncol 2024; 32:100635. [PMID: 39310222 PMCID: PMC11413750 DOI: 10.1016/j.phro.2024.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Background and purpose Image-based data mining (IBDM) requires spatial normalisation to reference anatomy, which is challenging in breast radiotherapy due to variations in the treatment position, breast shape and volume. We aim to optimise spatial normalisation for breast IBDM. Materials and methods Data from 996 patients treated with radiotherapy for early-stage breast cancer, recruited in the REQUITE study, were included. Patients were treated supine (n = 811), with either bilateral or ipsilateral arm(s) raised (551/260, respectively) or in prone position (n = 185). Four deformable image registration (DIR) configurations for extrathoracic spatial normalisation were tested. We selected the best-performing DIR configuration and further investigated two pathways: i) registering prone/supine cohorts independently and ii) registering all patients to a supine reference. The impact of arm positioning in the supine cohort was quantified. DIR accuracy was estimated using Normalised Cross Correlation (NCC), Dice Similarity Coefficient (DSC), mean Distance to Agreement (MDA), 95 % Hausdorff Distance (95 %HD), and inter-patient landmark registration uncertainty (ILRU). Results DIR using B-spline and normalised mutual information (NMI) performed the best across all evaluation metrics. Supine-supine registrations yielded highest accuracy (0.98 ± 0.01, 0.91 ± 0.04, 0.23 ± 0.19 cm, 1.17 ± 1.18 cm, 0.51 ± 0.26 cm for NCC, DSC, MDA, 95 %HD, and ILRU), followed by prone-prone and supine-prone registrations. Arm positioning had no significant impact on registration performance. For the best DIR strategy, uncertainty of 0.44 and 0.81 cm in the breast and shoulder regions was found. Conclusions B-spline algorithm using NMI and registered supine and prone cohorts independently provides the most optimal spatial normalisation strategy for breast IBDM.
Collapse
Affiliation(s)
- Tanwiwat Jaikuna
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Christie NHS Foundation Trust Hospital, Manchester, United Kingdom
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Fiona Wilson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Christie NHS Foundation Trust Hospital, Manchester, United Kingdom
| | - David Azria
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute ICM, Université Montpellier, INSERM 1194 IRCM, Montpellier, France
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Germany
| | | | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Campus, Barcelona, Spain
| | - Marcel van Herk
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Christie NHS Foundation Trust Hospital, Manchester, United Kingdom
| | - Peter Hoskin
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Christie NHS Foundation Trust Hospital, Manchester, United Kingdom
| | - Lea Kotzki
- University Federation of Radiation Oncology of Mediterranean Occitanie, Gard Cancer Institute ICG, CHU Caremeau, Nimes, France
| | | | - Zoe Lingard
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Christie NHS Foundation Trust Hospital, Manchester, United Kingdom
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alejandro Seoane
- Medical Physics Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Elena Sperk
- Department of Radiation Oncology, Mannheim Cancer Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - R Paul Symonds
- Leicester Cancer Research Centre, University of Leicester, United Kingdom
| | | | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tim Rattay
- Leicester Cancer Research Centre, University of Leicester, United Kingdom
| | - Victoria Reyes
- Radiation Oncology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Barry S. Rosenstein
- Department of Radiation Oncology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Dirk de Ruysscher
- Maastricht University Medical Center, Department of Radiation Oncology (Maastro Clinic), GROW School for Oncology and Developmental Biology, Maastricht, the Netherlands
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica, Grupo de Medicina Xenómica (USC), Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de, Santiago de Compostela, Spain
- Biomedical Network on Rare Diseases (CIBERER), Spain
| | - Liv Veldeman
- Ghent University Hospital, Department of Radiation Oncology, Ghent, Belgium
| | - Adam Webb
- Department of Genetics and Genome Biology, University of Leicester, United Kingdom
| | - Catharine ML West
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Christie NHS Foundation Trust Hospital, Manchester, United Kingdom
| | - Marianne C Aznar
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Christie NHS Foundation Trust Hospital, Manchester, United Kingdom
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Christie NHS Foundation Trust Hospital, Manchester, United Kingdom
| |
Collapse
|
2
|
Fernandes MG, Bussink J, Wijsman R, Stam B, Monshouwer R. Estimating how contouring differences affect normal tissue complication probability modelling. Phys Imaging Radiat Oncol 2024; 29:100533. [PMID: 38292649 PMCID: PMC10825684 DOI: 10.1016/j.phro.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024] Open
Abstract
Background and purpose Normal tissue complication probability (NTCP) models are developed from large retrospective datasets where automatic contouring is often used to contour the organs at risk. This study proposes a methodology to estimate how discrepancies between two sets of contours are reflected on NTCP model performance. We apply this methodology to heart contours within a dataset of non-small cell lung cancer (NSCLC) patients. Materials and methods One of the contour sets is designated the ground truth and a dosimetric parameter derived from it is used to simulate outcomes via a predefined NTCP relationship. For each simulated outcome, the selected dosimetric parameters associated with each contour set are individually used to fit a toxicity model and their performance is compared. Our dataset comprised 605 stage IIA-IIIB NSCLC patients. Manual, deep learning, and atlas-based heart contours were available. Results How contour differences were reflected in NTCP model performance depended on the slope of the predefined model, the dosimetric parameter utilized, and the size of the cohort. The impact of contour differences on NTCP model performance increased with steeper NTCP curves. In our dataset, parameters on the low range of the dose-volume histogram were more robust to contour differences. Conclusions Our methodology can be used to estimate whether a given contouring model is fit for NTCP model development. For the heart in comparable datasets, average Dice should be at least as high as between our manual and deep learning contours for shallow NTCP relationships (88.5 ± 4.5 %) and higher for steep relationships.
Collapse
Affiliation(s)
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robin Wijsman
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Barbara Stam
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - René Monshouwer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|