Transcranial alternating current stimulation of α but not β frequency sharpens multiple visual functions.
Brain Stimul 2019;
13:343-352. [PMID:
31711878 DOI:
10.1016/j.brs.2019.10.022]
[Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/23/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND
Transcranial alternating current stimulation (tACS) can entrain and enhance cortical oscillatory activity in a frequency-dependent manner. In our previous study (Nakazono et al., 2016), 20 Hz (β) tACS significantly increased excitability of primary motor cortex compared with 10 Hz (α) tACS. α oscillations are a prominent feature of the primary visual cortex (V1) in a resting electroencephalogram. Hence, we investigated whether α and β tACS can differentially influence multiple visual functions.
METHODS
Firstly, we evaluated the after-effects of α and β tACS on pattern-reversal (PR) and focal-flash (FF) visual evoked potentials (VEPs). Secondly, we determined the relationship between resting α oscillations and PR-VEPs modulated by tACS. Thirdly, the behavioral effects of tACS were assessed by contrast sensitivity.
RESULTS
α tACS modulated the amplitudes of PR-VEPs, compared with β tACS, but did not modulate the FF-VEPs. Time-frequency analysis revealed that α tACS facilitated event-related α phase synchronizations without increasing power, which consequently increased the PR-VEP amplitudes. There was a significant positive correlation between PR-VEP amplitudes and resting α oscillations. These findings suggested that α tACS modulated α oscillations, and affected visual functions of contrast and spatial frequency. Indeed, α tACS also improved subjects' contrast sensitivity at the behavioral level. Conversely, β tACS increased posterior α activity, but did not change VEP amplitudes.
CONCLUSIONS
α tACS can influence different neuronal populations from those influenced by β tACS. Thus, our results provide evidence that α tACS sharpens multiple visual functions by modulating α oscillations in V1.
Collapse