1
|
Capetti B, Conti L, Marzorati C, Grasso R, Ferrucci R, Pravettoni G. The Application of tDCS to Treat Pain and Psychocognitive Symptoms in Cancer Patients: A Scoping Review. Neural Plast 2024; 2024:6344925. [PMID: 38645612 PMCID: PMC11032211 DOI: 10.1155/2024/6344925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Background The use of transcranial direct current stimulation (tDCS) to modulate pain, psychological aspects, and cognitive functions has increased in recent years. The present scoping review aims to investigate the use of tDCS in cancer patients and its significant impact on psychocognitive and pain related symptoms. Methods From the earliest available date to June 2023, a comprehensive search was conducted in three electronic scientific databases-PubMed, Scopus, and Embase-and other supplementary sources. Ten relevant studies were identified and included, comprising single case studies, randomized controlled trials, pilot studies, and one retrospective study. PRISMA guidelines for scoping reviews were followed. Results These studies investigated the use of tDCS to improve pain and psychocognitive aspects in patients with various types of cancer, including breast, oral, bladder, lung, pancreatic, head and neck cancer, hepatocellular carcinoma, and meningioma. Overall, the results suggest that tDCS has shown efficacy in relieving pain, reducing anxiety and depression, and improving cognitive function in cancer patients. Conclusion Due to the limited number and high heterogeneity of the existing literature in this field, more investigation and the establishment of standardized protocols would be required to obtain more conclusive evidence.
Collapse
Affiliation(s)
- Benedetta Capetti
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
| | - Lorenzo Conti
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Marzorati
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Grasso
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Roberta Ferrucci
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- I Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, Milan 20142, Italy
| | - Gabriella Pravettoni
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Kesler SR, Henneghan AM, Prinsloo S, Palesh O, Wintermark M. Neuroimaging based biotypes for precision diagnosis and prognosis in cancer-related cognitive impairment. Front Med (Lausanne) 2023; 10:1199605. [PMID: 37720513 PMCID: PMC10499624 DOI: 10.3389/fmed.2023.1199605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Cancer related cognitive impairment (CRCI) is commonly associated with cancer and its treatments, yet the present binary diagnostic approach fails to capture the full spectrum of this syndrome. Cognitive function is highly complex and exists on a continuum that is poorly characterized by dichotomous categories. Advanced statistical methodologies applied to symptom assessments have demonstrated that there are multiple subclasses of CRCI. However, studies suggest that relying on symptom assessments alone may fail to account for significant differences in the neural mechanisms that underlie a specific cognitive phenotype. Treatment plans that address the specific physiologic mechanisms involved in an individual patient's condition is the heart of precision medicine. In this narrative review, we discuss how biotyping, a precision medicine framework being utilized in other mental disorders, could be applied to CRCI. Specifically, we discuss how neuroimaging can be used to determine biotypes of CRCI, which allow for increased precision in prediction and diagnosis of CRCI via biologic mechanistic data. Biotypes may also provide more precise clinical endpoints for intervention trials. Biotyping could be made more feasible with proxy imaging technologies or liquid biomarkers. Large cross-sectional phenotyping studies are needed in addition to evaluation of longitudinal trajectories, and data sharing/pooling is highly feasible with currently available digital infrastructures.
Collapse
Affiliation(s)
- Shelli R. Kesler
- Division of Adult Health, School of Nursing, The University of Texas at Austin, Austin, TX, United States
- Department of Diagnostic Medicine, Dell School of Medicine, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, Dell School of Medicine, The University of Texas at Austin, Austin, TX, United States
| | - Ashley M. Henneghan
- Division of Adult Health, School of Nursing, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, Dell School of Medicine, The University of Texas at Austin, Austin, TX, United States
| | - Sarah Prinsloo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Oxana Palesh
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer, Houston, TX, United States
| |
Collapse
|
3
|
Nguyen JP, Gaillard H, Suarez A, Terzidis-Mallat É, Constant-David D, Van Langhenhove A, Evin A, Malineau C, Tan SVO, Mhalla A, Lefaucheur JP, Nizard J. Bicentre, randomized, parallel-arm, sham-controlled trial of transcranial direct-current stimulation (tDCS) in the treatment of palliative care patients with refractory cancer pain. BMC Palliat Care 2023; 22:15. [PMID: 36849977 PMCID: PMC9972710 DOI: 10.1186/s12904-023-01129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/10/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Pain is a common symptom in palliative care cancer patients and is often insufficiently relieved. In recent years, transcranial direct-current stimulation (tDCS) of the motor cortex has been shown to be effective to treat chronic pain, essentially neuropathic pain. We propose to test the efficacy of tDCS in patients experiencing cancer pain in the palliative care setting. METHOD/DESIGN This article describes the protocol of a bicentre, randomized, parallel-arm, sham-controlled clinical trial evaluating tDCS in the treatment of palliative care patients with refractory cancer pain. Seventy patients between the ages of 18 and 80 years experiencing refractory pain with a pain score of 4/10 on a numerical rating scale (NRS) ranging from 0 to 10 will be enrolled in this trial. The main exclusion criteria are patients unable to fill in the various rating scales and life expectancy less than 3 weeks. Treatment consists of 5 consecutive tDCS sessions targeting the motor cortex (one daily session for 5 days) on the contralateral side to the pain. After randomization (1:1 ratio), 35 patients will receive active stimulation and 35 patients will receive sham stimulation. The primary endpoint is the NRS score and the primary objective is a significant improvement of this score between the baseline score recorded between D-3 and D-1 and the score recorded 4 days after stopping treatment (D8). The secondary objectives are to evaluate whether this improvement is maintained 16 days after stopping treatment (D21) and whether the following scores are improved on D14 and D21: Brief Pain Inventory, Edmonton Symptom Assessment System, Hospital Anxiety and Depression scale, State-Trait Anxiety Inventory and Medication Quantification Scale. DISCUSSION Positive results of this trial would indicate that tDCS can improve pain and quality of life of cancer patients in the palliative care setting. Reduction of analgesic consumption and improvement of activities of daily living should allow many patients to return home with a decreased workload for caregivers.
Collapse
Affiliation(s)
- Jean-Paul Nguyen
- Unité de Stimulation Transcrânienne, Clinique Bretéché, Groupe Elsan, Nantes, 44000 France ,grid.277151.70000 0004 0472 0371UIC22 et Service Douleur Soins Palliatifs et Soins de Support, Centre Hospitalo-Universitaire (CHU), Nantes, 44930 France
| | - Hélène Gaillard
- grid.277151.70000 0004 0472 0371UIC22 et Service Douleur Soins Palliatifs et Soins de Support, Centre Hospitalo-Universitaire (CHU), Nantes, 44930 France
| | - Alcira Suarez
- Unité de Stimulation Transcrânienne, Clinique Bretéché, Groupe Elsan, Nantes, 44000 France
| | | | - Diane Constant-David
- grid.277151.70000 0004 0472 0371UIC22 et Service Douleur Soins Palliatifs et Soins de Support, Centre Hospitalo-Universitaire (CHU), Nantes, 44930 France
| | - Aurélien Van Langhenhove
- grid.277151.70000 0004 0472 0371UIC22 et Service Douleur Soins Palliatifs et Soins de Support, Centre Hospitalo-Universitaire (CHU), Nantes, 44930 France
| | - Adrien Evin
- grid.277151.70000 0004 0472 0371UIC22 et Service Douleur Soins Palliatifs et Soins de Support, Centre Hospitalo-Universitaire (CHU), Nantes, 44930 France
| | - Catherine Malineau
- Unité de Stimulation Transcrânienne, Clinique Bretéché, Groupe Elsan, Nantes, 44000 France
| | - Son V. O. Tan
- Service de Neurochirurgie, University Hospital, Ho Chi Minh ville, Vietnam
| | - Alaa Mhalla
- grid.410511.00000 0001 2149 7878EA43910, Faculté de Médecine, Université Paris-Est, Créteil, 94000 France ,grid.50550.350000 0001 2175 4109Unité Douleur et Soins Palliatifs intégrés, DMU Cancer et spécialités, CHU Henri Mondor-Albert Chenevrier, APHP, Créteil, 94000 France
| | - Jean-Pascal Lefaucheur
- grid.410511.00000 0001 2149 7878EA43910, Faculté de Médecine, Université Paris-Est, Créteil, 94000 France ,grid.412116.10000 0004 1799 3934Unité de Neurophysiologie clinique, Hôpital Henri Mondor, APHP, Créteil, 94000 France
| | - Julien Nizard
- UIC22 et Service Douleur Soins Palliatifs et Soins de Support, Centre Hospitalo-Universitaire (CHU), Nantes, 44930, France. .,EA43910, Faculté de Médecine, Université Paris-Est, Créteil, 94000, France.
| |
Collapse
|
4
|
Hanna MHZ, RezkAllah SS, Shalaby AS, Hanna MZ. Efficacy of transcranial direct current stimulation (tDCS) on pain and shoulder range of motion in post-mastectomy pain syndrome patients: a randomized-control trial. BULLETIN OF FACULTY OF PHYSICAL THERAPY 2023. [DOI: 10.1186/s43161-022-00116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Abstract
Background
Post-mastectomy pain syndrome (PMPS) is a highly prevalent complication after surgical treatment for breast cancer, and it affects the patient’s quality of life in aspects of losing shoulder full range of motion, pain, and depression. Transcranial direct current stimulation (tDCS) is non-invasive brain stimulation technique that was used in numerous clinical applications and in pain reduction in cancer patients. However, the effectiveness of tDCS on PMPS has never been evaluated in an experimental study.
Aim
To investigate the effect of bilateral anodal tDCS of motor cortex (M1) on pain, depression, and shoulder range of motion (ROM) in post-mastectomy pain syndrome.
Study design
Randomized controlled trial.
Methods
A total of 30 female patients with post-mastectomy neuropathic pain were randomized into two groups; the intervention group which received bilateral tDCS on motor cortex (M1) and the control group that received sham bilateral tDCS on M1. As pain affects shoulder range of motion (ROM), shoulder ROM was measured by electronic goniometer pre- and post-tDCS application. In addition, the levels of pain and depression have been measured pre and post treatment. Pain has been measured with visual analogue scale (VAS) and depression with Beck-Depression-Inventory-BDI questionnaire (BDI).
Results
A significant difference was noted in group A regarding pain, depression and shoulder ROM (p= 0.001, p= 0.003, and p= 0.003, respectively). Between group comparison revealed a significant difference of VAS scores and shoulder flexion ROM between groups, the study group and the control group (p=0.041 and 0.048, respectively). Pain decreased by 32% and Shoulder flexion increased by 4.8% post-treatment while there were no significant difference in group B (p=0.567 and p=0.866, respectively).
Conclusions
The application of tDCS decreases the severity of pain and improves shoulder range of motion suffered by breast cancer patients after total mastectomy surgery.
Collapse
|
5
|
Guida JL, Agurs-Collins T, Ahles TA, Campisi J, Dale W, Demark-Wahnefried W, Dietrich J, Fuldner R, Gallicchio L, Green PA, Hurria A, Janelsins MC, Jhappan C, Kirkland JL, Kohanski R, Longo V, Meydani S, Mohile S, Niedernhofer LJ, Nelson C, Perna F, Schadler K, Scott JM, Schrack JA, Tracy RP, van Deursen J, Ness KK. Strategies to Prevent or Remediate Cancer and Treatment-Related Aging. J Natl Cancer Inst 2021; 113:112-122. [PMID: 32348501 PMCID: PMC7850536 DOI: 10.1093/jnci/djaa060] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
Up to 85% of adult cancer survivors and 99% of adult survivors of childhood cancer live with an accumulation of chronic conditions, frailty, and/or cognitive impairments resulting from cancer and its treatment. Thus, survivors often show an accelerated development of multiple geriatric syndromes and need therapeutic interventions. To advance progress in this area, the National Cancer Institute convened the second of 2 think tanks under the auspices of the Cancer and Accelerated Aging: Advancing Research for Healthy Survivors initiative. Experts assembled to share evidence of promising strategies to prevent, slow, or reverse the aging consequences of cancer and its treatment. The meeting identified research and resource needs, including geroscience-guided clinical trials; comprehensive assessments of functional, cognitive, and psychosocial vulnerabilities to assess and predict age-related outcomes; preclinical and clinical research to determine the optimal dosing for behavioral (eg, diet, exercise) and pharmacologic (eg, senolytic) therapies; health-care delivery research to evaluate the efficacy of integrated cancer care delivery models; optimization of intervention implementation, delivery, and uptake; and patient and provider education on cancer and treatment-related late and long-term adverse effects. Addressing these needs will expand knowledge of aging-related consequences of cancer and cancer treatment and inform strategies to promote healthy aging of cancer survivors.
Collapse
Affiliation(s)
- Jennifer L Guida
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Tanya Agurs-Collins
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Tim A Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | - Jorg Dietrich
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca Fuldner
- Division of Aging Biology, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Gallicchio
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Paige A Green
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Michelle C Janelsins
- Department of Surgery and Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Chamelli Jhappan
- Division of Cancer Biology, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Ronald Kohanski
- Division of Aging Biology, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Valter Longo
- University of Southern California, Los Angeles, California, USA
- IFOM Institute, Milan, Italy
| | - Simin Meydani
- Jean Mayer USDA Human Nutritional Research Center on Aging, Tufts University, Boston, MA, USA
| | - Supriya Mohile
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christian Nelson
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frank Perna
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Keri Schadler
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jennifer A Schrack
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Russell P Tracy
- Departments of Pathology & Laboratory Medicine, and Biochemistry, Larner College of Medicine, University of Vermont, Colchester, VT, USA
| | | | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
6
|
Gaynor AM, Pergolizzi D, Alici Y, Ryan E, McNeal K, Ahles TA, Root JC. Impact of transcranial direct current stimulation on sustained attention in breast cancer survivors: Evidence for feasibility, tolerability, and initial efficacy. Brain Stimul 2020; 13:1108-1116. [PMID: 32353419 DOI: 10.1016/j.brs.2020.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/26/2020] [Accepted: 04/19/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND A significant subset of breast cancer survivors experience cognitive difficulties in attention and memory, which persist for years following treatment. Transcranial direct current stimulation (tDCS) has been shown to be effective in improving working memory, attention, processing speed, and other cognitive functions in both healthy and clinical populations. To date, no studies have examined tDCS for rehabilitation of cancer-related cognitive dysfunction. OBJECTIVE/HYPOTHESIS We aimed to provide preliminary evidence for feasibility, tolerability, acceptability, and efficacy of tDCS in improving performance on a measure of sustained attention. METHODS In a within-subjects design, 16 breast cancer survivors underwent 2 consecutive days of active tDCS over the prefrontal cortex, and 2 days of sham tDCS, counterbalanced for order of stimulation condition, while performing a continuous performance test. RESULTS Stimulation was feasible and tolerable, with 89% of participants completing all sessions, and none reporting more than mild to moderate discomfort. Analyses of efficacy showed that during active stimulation, participants had significantly lower standard errors of reaction times overall, indicating better sustained attention ability, as compared to sham stimulation (p < 0.05). Furthermore, the effect of stimulation on standard errors of reaction times differed by inter-stimulus interval (ISI): for 1 and 2 s ISIs, there was no significant difference in performance between sham and active tDCS conditions, but for 4 s ISIs, stimulation improved variability in response times relative to sham (p < 0.05). CONCLUSIONS Results suggest that tDCS is feasible, tolerable, and may be an effective intervention to improve sustained attention difficulties in survivors with cancer-related cognitive dysfunction.
Collapse
Affiliation(s)
- Alexandra M Gaynor
- Memorial Sloan Kettering Cancer Center, Department of Psychiatry and Behavioral Sciences, New York, NY, USA.
| | - Denise Pergolizzi
- Universitat Internacional de Catalunya, School of Medicine and Health Sciences, Barcelona, Spain
| | - Yesne Alici
- Memorial Sloan Kettering Cancer Center, Department of Psychiatry and Behavioral Sciences, New York, NY, USA
| | - Elizabeth Ryan
- Memorial Sloan Kettering Cancer Center, Department of Psychiatry and Behavioral Sciences, New York, NY, USA
| | - Katrazyna McNeal
- Memorial Sloan Kettering Cancer Center, Department of Psychiatry and Behavioral Sciences, New York, NY, USA
| | - Tim A Ahles
- Memorial Sloan Kettering Cancer Center, Department of Psychiatry and Behavioral Sciences, New York, NY, USA
| | - James C Root
- Memorial Sloan Kettering Cancer Center, Department of Psychiatry and Behavioral Sciences, New York, NY, USA
| |
Collapse
|
7
|
Ibrahim NM, Abdelhameed KM, Kamal SMM, Khedr EMH, Kotb HIM. Effect of Transcranial Direct Current Stimulation of the Motor Cortex on Visceral Pain in Patients with Hepatocellular Carcinoma. PAIN MEDICINE 2019; 19:550-560. [PMID: 28605527 DOI: 10.1093/pm/pnx087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective Hepatocellular carcinoma (HCC) is frequently associated with visceral pain. Transcranial direct current stimulation (tDCS) has been proven to reduce chronic pain; however, its effectiveness in malignant visceral pain is unknown. This study aimed to investigate the effects of tDCS in patients with visceral pain due to HCC. Design This is a randomized, sham-controlled, double-blind, prospective study. Forty patients with visceral pain due to HCC were enrolled and randomly assigned into two groups: a real and a sham group; tDCS was applied over the primary motor area (M1) for 10 consecutive days (2 mA, 30 minutes). Patient's pain was evaluated by visual analog scale (VAS) and verbal descriptor scale (VDS) and for depression by Hamilton rating scale (HAM-D). Evaluation was done at prestimulation, after the first, fifth, and 10th sessions, and one month after the end of stimulation sessions. Results Real tDCS showed a reduction of VDS (P = 0.001, F = 4.01) and VAS (P = 0.001, F = 6.817) for HAM-D (P = 0.012, F = 5,077); the effect started from the fifth session and continued to one month after stimulation, while in the sham group the effect persisted for five days only. Percentage reduction in all scales in the real group after the 10th session was as follows: VDS P = 0.008, VAS P = 0.001, HAM-D = 0.001; for one month after the end of stimulation, it was as follows: VDS P = 0.001, VAS P = 0.037, HAM-D = 0.002. Conclusions tDCS proved to be an effective and clinically relevant therapeutic strategy for visceral pain due to HCC.
Collapse
Affiliation(s)
- Nagwa Mostafa Ibrahim
- Faculty of Medicine, Anesthesia, Intensive Care and Pain Management, Assiut Universiy, Assiut, Egypt
| | | | | | | | | |
Collapse
|
8
|
Diminished gray matter density mediates chemotherapy dosage-related cognitive impairment in breast cancer patients. Sci Rep 2018; 8:13801. [PMID: 30218006 PMCID: PMC6138678 DOI: 10.1038/s41598-018-32257-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
To investigate chemotherapy dosage-related cognitive impairment and its neural mechanisms in breast cancer (BC) patients. Twenty-eight breast cancer patients after each chemotherapy cycle and matched 29 healthy control subjects underwent structural magnetic resonance imaging. Voxel-based morphometry analysis was performed to compare group differences in the gray matter for the whole brain. Furthermore, mediation analysis was conducted to explore the role of brain structures in chemotherapy dosage-related cognitive impairment. Voxel-based morphometry analysis was performed in gray matter for the whole brain of BC patients after chemotherapy. The results revealed that the gray matter density in the left inferior frontal gyrus, right middle frontal gyrus, right fusiform area, and bilateral cerebellum was decreased in the BC patients compared to controls. The number of chemotherapy cycles was negatively associated with general cognitive capacity, verbal fluency and digit span performance in the BC patients. In addition, decreased gray matter density in the right middle frontal gyrus could mediate the chemotherapy dosage effects on verbal fluency performance. These findings indicate that the dose-response relationship between chemotherapy and cognitive impairment may depend on the decreases in gray matter density of the frontal cortical structures.
Collapse
|
9
|
Riggs A, Patel V, Paneri B, Portenoy RK, Bikson M, Knotkova H. At-Home Transcranial Direct Current Stimulation (tDCS) With Telehealth Support for Symptom Control in Chronically-Ill Patients With Multiple Symptoms. Front Behav Neurosci 2018; 12:93. [PMID: 29872381 PMCID: PMC5972211 DOI: 10.3389/fnbeh.2018.00093] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) delivered in multiple sessions can reduce symptom burden, but access of chronically ill patients to tDCS studies is constrained by the burden of office-based tDCS administration. Expanded access to this therapy can be accomplished through the development of interventions that allow at-home tDCS applications. Objective: We describe the development and initial feasibility assessment of a novel intervention for the chronically ill that combines at-home tDCS with telehealth support. Methods: In the developmental phase, the tDCS procedure was adjusted for easy application by patients or their informal caregivers at home, and a tDCS protocol with specific elements for enhanced safety and remote adherence monitoring was created. Lay language instructional materials were written and revised based on expert feedback. The materials were loaded onto a tablet allowing for secure video-conferencing. The telehealth tablet was paired with an at-home tDCS device that allowed for remote dose control via electronic codes dispensed to patients prior to each session. tDCS was delivered in two phases: once daily on 10 consecutive days, followed by an as needed regimen for 20 days. Initial feasibility of this tDCS-telehealth system was evaluated in four patients with advanced chronic illness and multiple symptoms. Change in symptom burden and patient satisfaction were assessed with the Condensed Memorial Symptom Assessment Scale (CMSAS) and a tDCS user survey. Results: The telehealth-tDCS protocol includes one home visit and has seven patient-tailored elements and six elements enhancing safety monitoring. Replicable electrode placement at home without 10–20 EEG measurement is achieved via a headband that holds electrodes in a pre-determined position. There were no difficulties with patients’ training, protocol adherence, or tolerability. A total of 60 tDCS sessions were applied. No session required discontinuation, and there were no adverse events. Data collection was feasible and there were no missing data. Satisfaction with the tDCS-telehealth procedure was high and the patients were comfortable using the system. Conclusion: At-home tDCS with telehealth support appears to be a feasible approach for the management of symptom burden in patients with chronic illness. Further studies to evaluate and optimize the protocol effectiveness for symptom-control outcomes are warranted.
Collapse
Affiliation(s)
- Alexa Riggs
- MJHS Institute for Innovation in Palliative Care, New York, NY, United States
| | - Vaishali Patel
- MJHS Institute for Innovation in Palliative Care, New York, NY, United States
| | - Bhaskar Paneri
- Department of Biomedical Engineering, Grove School of Engineering, The City College of New York, New York, NY, United States
| | - Russell K Portenoy
- MJHS Institute for Innovation in Palliative Care, New York, NY, United States.,MJHS Hospice and Palliative Care, New York, NY, United States.,Department of Family and Social Medicine, Albert Einstein College of Medicine, New York, NY, United States.,The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, United States
| | - Marom Bikson
- Department of Biomedical Engineering, Grove School of Engineering, The City College of New York, New York, NY, United States
| | - Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, United States.,Department of Family and Social Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|