1
|
Yang J, Tang C. Causal relationship between imaging-derived phenotypes and neurodegenerative diseases: a Mendelian randomization study. Mamm Genome 2024; 35:711-723. [PMID: 39180568 DOI: 10.1007/s00335-024-10065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Neurodegenerative diseases are incurable conditions that lead to gradual and progressive deterioration of brain function in patients. With the aging population, the prevalence of these diseases is expected to increase, posing a significant economic burden on society. Imaging techniques play a crucial role in the diagnosis and monitoring of neurodegenerative diseases. This study utilized a two-sample Mendelian randomization (MR) analysis to assess the causal relationship between different imaging-derived phenotypes (IDP) in the brain and neurodegenerative diseases. Multiple MR methods were employed to minimize bias and obtain reliable estimates of the potential causal relationship between the variable exposures of interest and the outcomes. The study found potential causal relationships between different IDPs and Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and frontotemporal dementia (FTD). Specifically, the study identified potential causal relationships between 2 different types of IDPs and AD, 8 different types of IDPs and PD, 11 different types of imaging-derived phenotypes and ALS, 1 type of IDP and MS, and 1 type of IDP and FTD. This study provides new insights for the prevention, diagnosis, and treatment of neurodegenerative diseases, offering important clues for understanding the pathogenesis of these diseases and developing relevant intervention strategies.
Collapse
Affiliation(s)
- Jiaxin Yang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Chao Tang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China.
- School of Clinical Medicine, Guizhou Medical University, No.28, Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
2
|
Passaretti M, Cilia R, Rinaldo S, Rossi Sebastiano D, Orunesu E, Devigili G, Braccia A, Paparella G, De Riggi M, van Eimeren T, Strafella AP, Lanteri P, Berardelli A, Bologna M, Eleopra R. Neurophysiological markers of motor compensatory mechanisms in early Parkinson's disease. Brain 2024; 147:3714-3726. [PMID: 39189320 PMCID: PMC11531851 DOI: 10.1093/brain/awae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/13/2024] [Indexed: 08/28/2024] Open
Abstract
Compensatory mechanisms in Parkinson's disease are defined as the changes that the brain uses to adapt to neurodegeneration and progressive dopamine reduction. Motor compensation in early Parkinson's disease could, in part, be responsible for a unilateral onset of clinical motor signs despite the presence of bilateral nigrostriatal degeneration. Although several mechanisms have been proposed for compensatory adaptations in Parkinson's disease, the underlying pathophysiology is unclear. Here, we investigate motor compensation in Parkinson's disease by investigating the relationship between clinical signs, dopamine transporter imaging data and neurophysiological measures of the primary motor cortex (M1), using transcranial magnetic stimulation in presymptomatic and symptomatic hemispheres of patients. In this cross-sectional, multicentre study, we screened 82 individuals with Parkinson's disease. Patients were evaluated clinically in their medication OFF state using standardized scales. Sixteen Parkinson's disease patients with bilateral dopamine transporter deficit in the putamina but unilateral symptoms were included. Twenty-eight sex- and age-matched healthy controls were also investigated. In all participants, we tested cortical excitability using single- and paired-pulse techniques, interhemispheric inhibition and cortical plasticity with paired associative stimulation. Data were analysed with ANOVAs, multiple linear regression and logistic regression models. Individual coefficients of motor compensation were defined in patients based on clinical and imaging data, i.e. the motor compensation coefficient. The motor compensation coefficient includes an asymmetry score to balance motor and dopamine transporter data between the two hemispheres, in addition to a hemispheric ratio accounting for the relative mismatch between the magnitude of motor signs and dopaminergic deficit. In patients, corticospinal excitability and plasticity were higher in the presymptomatic compared with the symptomatic M1. Also, interhemispheric inhibition from the presymptomatic to the symptomatic M1 was reduced. Lower putamen binding was associated with higher plasticity and reduced interhemispheric inhibition in the presymptomatic hemisphere. The motor compensation coefficient distinguished the presymptomatic from the symptomatic hemisphere. Finally, in the presymptomatic hemisphere, a higher motor compensation coefficient was associated with lower corticospinal excitability and interhemispheric inhibition and with higher plasticity. In conclusion, the present study suggests that motor compensation involves M1-striatal networks and intercortical connections becoming more effective with progressive loss of dopaminergic terminals in the putamen. The balance between these motor networks seems to be driven by cortical plasticity.
Collapse
Affiliation(s)
- Massimiliano Passaretti
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Department of Clinical Neuroscience, Karolinska Institutet, 17165 Solna, Sweden
| | - Roberto Cilia
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Sara Rinaldo
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Davide Rossi Sebastiano
- Neurophysiology Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Eva Orunesu
- Nuclear Medicine Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Grazia Devigili
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Arianna Braccia
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Giulia Paparella
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Martina De Riggi
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Thilo van Eimeren
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Antonio Paolo Strafella
- Krembil Brain Institute, University Health Network, Toronto, ON M5R 1E8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada
| | - Paola Lanteri
- Neurophysiology Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Roberto Eleopra
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| |
Collapse
|
3
|
Lizarraga KJ, Gnanamanogaran B, Al‐Ozzi TM, Cohn M, Tomlinson G, Boutet A, Elias GJ, Germann J, Soh D, Kalia SK, Hodaie M, Munhoz RP, Marras C, Hutchison WD, Lozano AM, Lang AE, Fasano A. Lateralized Subthalamic Stimulation for Axial Dysfunction in Parkinson's Disease: Exploratory Outcomes and Open-Label Extension. Mov Disord Clin Pract 2024; 11:1421-1426. [PMID: 39136363 PMCID: PMC11542286 DOI: 10.1002/mdc3.14188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/17/2024] [Accepted: 07/30/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND A randomized trial suggested that reducing left-sided subthalamic stimulation amplitude could improve axial dysfunction. OBJECTIVES To explore open-label tolerability and associations between trial outcomes and asymmetry data. METHODS We collected adverse events in trial participants treated with open-label lateralized settings for ≥3 months. We explored associations between trial outcomes, location of stimulation and motor asymmetry. RESULTS 14/17 participants tolerated unilateral amplitude reduction (left-sided = 10, right-sided = 4). Two hundred eighty-four left-sided and 1113 right-sided stimulated voxels were associated with faster gait velocity, 81 left-sided and 22 right-sided stimulated voxels were associated with slower gait velocity. Amplitude reduction contralateral to shorter step length was associated with 2.4-point reduction in axial MDS-UPDRS. Reduction contralateral to longer step length was associated with 10-point increase in MDS-UPDRS. CONCLUSIONS Left-sided amplitude reduction is potentially more tolerable than right-sided amplitude reduction. Right-sided more than left-sided stimulation could be associated with faster gait velocity. Shortened step length might reflect contralateral overstimulation.
Collapse
Affiliation(s)
- Karlo J. Lizarraga
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Hospital Network and Division of Neurology, Department of MedicineUniversity of TorontoTorontoONCanada
- Motor Physiology and Neuromodulation Program, Division of Movement Disorders, Department of NeurologyUniversity of RochesterRochesterNYUSA
| | - Bhairavei Gnanamanogaran
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Hospital Network and Division of Neurology, Department of MedicineUniversity of TorontoTorontoONCanada
- University of TorontoTorontoONCanada
| | - Tameem M. Al‐Ozzi
- University of TorontoTorontoONCanada
- Krembil Research InstituteTorontoONCanada
- Departments of Surgery and PhysiologyToronto Western Hospital and University of TorontoTorontoONCanada
- Graduate Training Center of NeuroscienceUniversitätsklinikum TübingenTübingenGermany
| | - Melanie Cohn
- Krembil Research InstituteTorontoONCanada
- Department of PsychologyUniversity of TorontoTorontoONCanada
| | - George Tomlinson
- Institute of Health Policy, Management and EvaluationUniversity of TorontoTorontoONCanada
- University Health NetworkTorontoONCanada
| | - Alexandre Boutet
- Department of PsychologyUniversity of TorontoTorontoONCanada
- Joint Department of Medical ImagingUniversity of TorontoTorontoONCanada
- Division of Neurosurgery, Department of SurgeryUniversity Health Network and University of TorontoTorontoONCanada
| | - Gavin J.B. Elias
- University Health NetworkTorontoONCanada
- Division of Neurosurgery, Department of SurgeryUniversity Health Network and University of TorontoTorontoONCanada
| | - Jürgen Germann
- University Health NetworkTorontoONCanada
- Division of Neurosurgery, Department of SurgeryUniversity Health Network and University of TorontoTorontoONCanada
| | - Derrick Soh
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Hospital Network and Division of Neurology, Department of MedicineUniversity of TorontoTorontoONCanada
- Alfred HospitalMelbourneVICAustralia
| | - Suneil K. Kalia
- Krembil Research InstituteTorontoONCanada
- Division of Neurosurgery, Department of SurgeryUniversity Health Network and University of TorontoTorontoONCanada
- CenteR for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoONCanada
| | - Mojgan Hodaie
- Krembil Research InstituteTorontoONCanada
- Division of Neurosurgery, Department of SurgeryUniversity Health Network and University of TorontoTorontoONCanada
| | - Renato P. Munhoz
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Hospital Network and Division of Neurology, Department of MedicineUniversity of TorontoTorontoONCanada
- Krembil Research InstituteTorontoONCanada
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Hospital Network and Division of Neurology, Department of MedicineUniversity of TorontoTorontoONCanada
- Krembil Research InstituteTorontoONCanada
| | - William D. Hutchison
- Krembil Research InstituteTorontoONCanada
- Departments of Surgery and PhysiologyToronto Western Hospital and University of TorontoTorontoONCanada
- Division of Neurosurgery, Department of SurgeryUniversity Health Network and University of TorontoTorontoONCanada
- CenteR for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoONCanada
| | - Andres M. Lozano
- Krembil Research InstituteTorontoONCanada
- Division of Neurosurgery, Department of SurgeryUniversity Health Network and University of TorontoTorontoONCanada
| | - Anthony E. Lang
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Hospital Network and Division of Neurology, Department of MedicineUniversity of TorontoTorontoONCanada
- Krembil Research InstituteTorontoONCanada
| | - Alfonso Fasano
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Hospital Network and Division of Neurology, Department of MedicineUniversity of TorontoTorontoONCanada
- Krembil Research InstituteTorontoONCanada
- CenteR for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoONCanada
| |
Collapse
|
4
|
Paparella G, De Riggi M, Cannavacciuolo A, Costa D, Birreci D, Passaretti M, Angelini L, Colella D, Guerra A, Berardelli A, Bologna M. Interhemispheric imbalance and bradykinesia features in Parkinson's disease. Brain Commun 2024; 6:fcae020. [PMID: 38370448 PMCID: PMC10873583 DOI: 10.1093/braincomms/fcae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/14/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
In patients with Parkinson's disease, the connectivity between the two primary motor cortices may be altered. However, the correlation between asymmetries of abnormal interhemispheric connections and bradykinesia features has not been investigated. Furthermore, the potential effects of dopaminergic medications on this issue remain largely unclear. The aim of the present study is to investigate the interhemispheric connections in Parkinson's disease by transcranial magnetic stimulation and explore the potential relationship between interhemispheric inhibition and bradykinesia feature asymmetry in patients. Additionally, we examined the impact of dopaminergic therapy on neurophysiological and motor characteristics. Short- and long-latency interhemispheric inhibition was measured in 18 Parkinson's disease patients and 18 healthy controls, bilaterally. We also assessed the corticospinal and intracortical excitability of both primary motor cortices. We conducted an objective analysis of finger-tapping from both hands. Correlation analyses were performed to explore potential relationships among clinical, transcranial magnetic stimulation and kinematic data in patients. We found that short- and long-latency interhemispheric inhibition was reduced (less inhibition) from both hemispheres in patients than controls. Compared to controls, finger-tapping movements in patients were slower, more irregular, of smaller amplitudes and characterized by a progressive amplitude reduction during movement repetition (sequence effect). Among Parkinson's disease patients, the degree of short-latency interhemispheric inhibition imbalance towards the less affected primary motor cortex correlated with the global clinical motor scores, as well as with the sequence effect on the most affected hand. The greater the interhemispheric inhibition imbalance towards the less affected hemisphere (i.e. less inhibition from the less to the most affected primary motor cortex than that measured from the most to the less affected primary motor cortex), the more severe the bradykinesia in patients. In conclusion, the inhibitory connections between the two primary motor cortices in Parkinson's disease are reduced. The interhemispheric disinhibition of the primary motor cortex may have a role in the pathophysiology of specific bradykinesia features in patients, i.e. the sequence effect.
Collapse
Affiliation(s)
- Giulia Paparella
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | - Martina De Riggi
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | | | - Davide Costa
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | - Daniele Birreci
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | | | | | - Donato Colella
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | - Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua 35121, Italy
- Padova Neuroscience Center (PNC), University of Padua, Padua 35131, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| |
Collapse
|
5
|
Maidan I, Zifman N, Hausdorff JM, Giladi N, Levy-Lamdan O, Mirelman A. A multimodal approach using TMS and EEG reveals neurophysiological changes in Parkinson's disease. Parkinsonism Relat Disord 2021; 89:28-33. [PMID: 34216938 DOI: 10.1016/j.parkreldis.2021.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Alterations in large scale neural networks leading to neurophysiological changes have been described in Parkinson's disease (PD). The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has been suggested as a promising tool to identify and quantify neurophysiological mechanisms. The aim of this study was to investigate specific changes in electrical brain activity in response to stimulation of four brain areas in patients with PD. METHODS 21 healthy controls and 32 patients with PD underwent a combined TMS-EEG assessment that included stimulation of four brain areas: left M1, right M1, left dorso-lateral prefrontal cortex (DLPFC), and right DLPFC. Six measures were calculated to characterize the TMS evoked potentials (TEP) using EEG: (1) wave form adherence (WFA), (2) late phase deflection (LPD), (3) early phase deflection (EPD), (4) short-term plasticity (STP), (5) inter-trial adherence, and (6) connectivity between right and left M1 and DLPFC. A Linear mixed-model was used to compare these measures between groups and areas stimulated. RESULTS Patients with PD showed lower WFA (p = 0.052), lower EPD (p = 0.009), lower inter-trial adherence (p < 0.001), and lower connectivity between homologs areas (p = 0.050), compared to healthy controls. LPD and STP measures were not different between the groups. In addition, lower inter-trial adherence correlated with longer disease duration (r = -0.355, p = 0.050). CONCLUSIONS Our findings provide evidence to various alterations in neurophysiological measures in patients with PD. The higher cortical excitability along with increased variability and lower widespread of the evoked potentials in PD can elucidate different aspects related to the pathophysiology of the disease.
Collapse
Affiliation(s)
- Inbal Maidan
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel.
| | - Noa Zifman
- QuantalX Neuroscience, 'Beer-Yaacov', Israel
| | - Jeffrey M Hausdorff
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Israel; Rush Alzheimer's Disease Center and Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Nir Giladi
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel
| | | | - Anat Mirelman
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
6
|
Baarbé J, Vesia M, Brown MJN, Lizarraga KJ, Gunraj C, Jegatheeswaran G, Drummond NM, Rinchon C, Weissbach A, Saravanamuttu J, Chen R. Interhemispheric interactions between the right angular gyrus and the left motor cortex: a transcranial magnetic stimulation study. J Neurophysiol 2021; 125:1236-1250. [PMID: 33625938 DOI: 10.1152/jn.00642.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interconnection of the angular gyrus of right posterior parietal cortex (PPC) and the left motor cortex (LM1) is essential for goal-directed hand movements. Previous work with transcranial magnetic stimulation (TMS) showed that right PPC stimulation increases LM1 excitability, but right PPC followed by left PPC-LM1 stimulation (LPPC-LM1) inhibits LM1 corticospinal output compared with LPPC-LM1 alone. It is not clear if right PPC-mediated inhibition of LPPC-LM1 is due to inhibition of left PPC or to combined effects of right and left PPC stimulation on LM1 excitability. We used paired-pulse TMS to study the extent to which combined right and left PPC stimulation, targeting the angular gyri, influences LM1 excitability. We tested 16 healthy subjects in five paired-pulsed TMS experiments using MRI-guided neuronavigation to target the angular gyri within PPC. We tested the effects of different right angular gyrus (RAG) and LM1 stimulation intensities on the influence of RAG on LM1 and on influence of left angular gyrus (LAG) on LM1 (LAG-LM1). We then tested the effects of RAG and LAG stimulation on LM1 short-interval intracortical facilitation (SICF), short-interval intracortical inhibition (SICI), and long-interval intracortical inhibition (LICI). The results revealed that RAG facilitated LM1, inhibited SICF, and inhibited LAG-LM1. Combined RAG-LAG stimulation did not affect SICI but increased LICI. These experiments suggest that RAG-mediated inhibition of LAG-LM1 is related to inhibition of early indirect (I)-wave activity and enhancement of GABAB receptor-mediated inhibition in LM1. The influence of RAG on LM1 likely involves ipsilateral connections from LAG to LM1 and heterotopic connections from RAG to LM1.NEW & NOTEWORTHY Goal-directed hand movements rely on the right and left angular gyri (RAG and LAG) and motor cortex (M1), yet how these brain areas functionally interact is unclear. Here, we show that RAG stimulation facilitated right hand motor output from the left M1 but inhibited indirect (I)-waves in M1. Combined RAG and LAG stimulation increased GABAB, but not GABAA, receptor-mediated inhibition in left M1. These findings highlight unique brain interactions between the RAG and left M1.
Collapse
Affiliation(s)
- Julianne Baarbé
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Michael Vesia
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Matt J N Brown
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan.,Department of Kinesiology, California State University, Sacramento, California
| | - Karlo J Lizarraga
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan.,Motor Physiology and Neuromodulation Program, Division of Movement Disorders and Center for Health + Technology, Department of Neurology, University of Rochester, Rochester, New York
| | - Carolyn Gunraj
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Gaayathiri Jegatheeswaran
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Neil M Drummond
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Cricia Rinchon
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Anne Weissbach
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan.,Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - James Saravanamuttu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Robert Chen
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Kinesiology, Brain Behavior Laboratory, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|