1
|
Pan NC, Gao R, Ma K, Qiao L, Ni D, Yu T, Wang Y. Left Insula and Right Middle Temporal Gyrus Dominate Cortical Network Discriminating Arousal-dependent Emotions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411790. [PMID: 39823533 DOI: 10.1002/advs.202411790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/14/2024] [Indexed: 01/19/2025]
Abstract
Emotion processing is an integral part of everyone's life. The basic neural circuits involved in emotion perception are becoming clear, though the emotion's cognitive processing remains under investigation. Utilizing the stereo-electroencephalograph with high temporal-spatial resolution, this study aims to decipher the neural pathway responsible for discriminating low-arousal and high-arousal emotions. This study involves 19 patients with pharmacologically resistant epilepsy who participate in a delayed match/mismatch sample task designed to separately assess their ability to discriminate between low-arousal and high-arousal emotions. Three groups of 11 brain subregions, with dominant lateralization, compose a network, which is identified as responsible for discriminating arousal-dependent emotions. The connection of these subregions, leading by the left insula and right middle temporal gyrus, defines the pathways for discriminating emotions with different arousals. Further, the separated network patterns related to emotional discrimination are face-independent. Overall, the left insula and the right middle temporal gyrus emerge as core components in the network, which plays key roles in the dynamic course for discriminating low- and high-arousal emotions in the human brain.
Collapse
Affiliation(s)
- Na Clara Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Runshi Gao
- Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Kai Ma
- Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Liang Qiao
- Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Duanyu Ni
- Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Tao Yu
- Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Institute of sleep and consciousness disorders, Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei, 050000, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital, Capital Medical University, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| |
Collapse
|
2
|
Şahintürk S, Yıldırım E. Effects of tDCS on emotion recognition and brain oscillations. J Clin Exp Neuropsychol 2024; 46:504-521. [PMID: 38855946 DOI: 10.1080/13803395.2024.2364403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Emotion recognition, the ability to interpret the emotional state of individuals by looking at their facial expressions, is essential for healthy social interactions and communication. There is limited research on the effects of tDCS on emotion recognition in the literature. This study aimed to investigate the effects of anodal stimulation of the ventromedial prefrontal cortex (vmPFC), a key region for emotion recognition from facial expressions, on emotion recognition and brain oscillations. METHOD A single-blind randomized-controlled study was conducted with 54 healthy participants. Before and after brain stimulation emotion recognition tasks were administered and resting-state EEG were recorded. The changes in task performances and brain oscillations were analyzed using repeated-measures two-way ANOVA analysis. RESULTS There was no significant difference in the emotion recognition tasks between groups in pre-post measurements. The changes in delta, theta, alpha, beta and gamma frequency bands in the frontal, temporal, and posterio-occipital regions, which were determined as regions of interest in resting state EEG data before and after tDCS, were compared between groups. The results showed that there was a significant difference between groups only in delta frequency before and after tDCS in the frontal and temporal regions. While an increase in delta activity was observed in the experimental group in the frontal and temporal regions, a decrease was observed in the control group. CONCLUSIONS The tDCS may not have improved emotion recognition because it may not have had the desired effect on the vmPFC, which is in the lower part of the prefrontal lobe. The changes in EEG frequencies observed section tDCS may be similar to those seen in some pathological processes, which could explain the lack of improvement in emotion recognition. Future studies to be carried out for better understand this effect are important.
Collapse
Affiliation(s)
- Saliha Şahintürk
- The Research Institute for Health Sciences and Technologies (SABITA) fiNCAN Laboratory, Istanbul Medipol University, İstanbul, Türkiye
| | - Erol Yıldırım
- The Research Institute for Health Sciences and Technologies (SABITA) fiNCAN Laboratory, Istanbul Medipol University, İstanbul, Türkiye
- Department of Psychology, Istanbul Medipol University, İstanbul, Türkiye
| |
Collapse
|
3
|
Kawata NYS, Nishitani S, Yao A, Takiguchi S, Mizuno Y, Mizushima S, Makita K, Hamamura S, Saito DN, Okazawa H, Fujisawa TX, Tomoda A. Brain structures and functional connectivity in neglected children with no other types of maltreatment. Neuroimage 2024; 292:120589. [PMID: 38575041 DOI: 10.1016/j.neuroimage.2024.120589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Child maltreatment can adversely affect brain development, leading to vulnerabilities in brain structure and function and various psychiatric disorders. Among the various types of child maltreatment, neglect has the highest incidence rate (76.0%); however, data on its sole adverse influence on the brain remain limited. This case-control brain magnetic resonance imaging (MRI) study identified the changes in gray matter structure and function that distinguish neglected children with no other type of maltreatment (Neglect group, n = 23) from typically developing children (TD group, n = 140), and investigated the association between these structural and functional differences and specific psychosocial phenotypes observed in neglected children. Our results showed that the Neglect group had a larger right and left anterior cingulate cortex (R/L.ACC) and smaller left angular gyrus (L.AG) gray matter volume. The larger R/L.ACC was associated with hyperactivity and inattention. Resting-state functional analysis showed increased functional connectivity (FC) between the left supramarginal gyrus (L.SMG) in the salience network (SN) and the right middle frontal gyrus (R.MFG) simultaneously with a decrease in FC with the L.ACC for the same seed. The increased FC for the R.MFG was associated with difficulty in peer problems and depressive symptoms; a mediating effect was evident for depressive symptoms. These results suggest that the structural atypicality of the R/L.ACC indirectly contributes to the disturbed FCs within the SN, thereby exacerbating depressive symptoms in neglected children. In conclusion, exposure to neglect in childhood may lead to maladaptive brain development, particularly neural changes associated with depressive symptoms.
Collapse
Affiliation(s)
- Natasha Y S Kawata
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Shota Nishitani
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui 910-1193, Japan; Life Science Innovation Center, University of Fukui, Fukui 910-8507, Japan.
| | - Akiko Yao
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Shinichiro Takiguchi
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui 910-1193, Japan; Life Science Innovation Center, University of Fukui, Fukui 910-8507, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui 910-1193, Japan
| | - Yoshifumi Mizuno
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui 910-1193, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui 910-1193, Japan
| | - Sakae Mizushima
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui 910-1193, Japan
| | - Kai Makita
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Shoko Hamamura
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui 910-1193, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui 910-1193, Japan
| | - Daisuke N Saito
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui 910-1193, Japan
| | - Hidehiko Okazawa
- Life Science Innovation Center, University of Fukui, Fukui 910-8507, Japan; Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| | - Takashi X Fujisawa
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui 910-1193, Japan; Life Science Innovation Center, University of Fukui, Fukui 910-8507, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui 910-1193, Japan; Life Science Innovation Center, University of Fukui, Fukui 910-8507, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui 910-1193, Japan.
| |
Collapse
|
4
|
Roberti E, Turati C, Actis-Grosso R. Single point motion kinematics convey emotional signals in children and adults. PLoS One 2024; 19:e0301896. [PMID: 38598520 PMCID: PMC11006184 DOI: 10.1371/journal.pone.0301896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
This study investigates whether humans recognize different emotions conveyed only by the kinematics of a single moving geometrical shape and how this competence unfolds during development, from childhood to adulthood. To this aim, animations in which a shape moved according to happy, fearful, or neutral cartoons were shown, in a forced-choice paradigm, to 7- and 10-year-old children and adults. Accuracy and response times were recorded, and the movement of the mouse while the participants selected a response was tracked. Results showed that 10-year-old children and adults recognize happiness and fear when conveyed solely by different kinematics, with an advantage for fearful stimuli. Fearful stimuli were also accurately identified at 7-year-olds, together with neutral stimuli, while, at this age, the accuracy for happiness was not significantly different than chance. Overall, results demonstrates that emotions can be identified by a single point motion alone during both childhood and adulthood. Moreover, motion contributes in various measures to the comprehension of emotions, with fear recognized earlier in development and more readily even later on, when all emotions are accurately labeled.
Collapse
Affiliation(s)
- Elisa Roberti
- Psychology Department, University of Milano–Bicocca, Milan, Italy
- Neuromi, Milan Center for Neuroscience, Milan, Italy
| | - Chiara Turati
- Psychology Department, University of Milano–Bicocca, Milan, Italy
- Neuromi, Milan Center for Neuroscience, Milan, Italy
| | - Rossana Actis-Grosso
- Psychology Department, University of Milano–Bicocca, Milan, Italy
- Neuromi, Milan Center for Neuroscience, Milan, Italy
| |
Collapse
|
5
|
Lin TY, Zhang YH, Zhang YN, Yang Y, Du L, Li QY, He Y, Liu FC, Tang XY, Tang LL, Sun YS. Resting state functional connectome in breast cancer patients with fear of cancer recurrence. Cereb Cortex 2024; 34:bhae062. [PMID: 38436464 DOI: 10.1093/cercor/bhae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
This study aimed to investigate network-level brain functional changes in breast cancer patients and their relationship with fear of cancer recurrence (FCR). Resting-state functional MRI was collected from 43 patients with breast cancer and 40 healthy controls (HCs). Graph theory analyses, whole-brain voxel-wise functional connectivity strength (FCS) analyses and seed-based functional connectivity (FC) analyses were performed to identify connection alterations in breast cancer patients. Correlations between brain functional connections (i.e. FCS and FC) and FCR level were assessed to further reveal the neural mechanisms of FCR in breast cancer patients. Graph theory analyses indicated a decreased clustering coefficient in breast cancer patients compared to HCs (P = 0.04). Patients with breast cancer exhibited significantly higher FCS in both higher-order function networks (frontoparietal, default mode, and dorsal attention systems) and primary somatomotor networks. Among the hyperconnected regions in breast cancer, the left inferior frontal operculum demonstrated a significant positive correlation with FCR. Our findings suggest that breast cancer patients exhibit less segregation of brain function, and the left inferior frontal operculum is a key region associated with FCR. This study offers insights into the neural mechanisms of FCR in breast cancer patients at the level of brain connectome.
Collapse
Affiliation(s)
- Tian-Ye Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Yi-He Zhang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing, 100876, China
| | - Ye-Ning Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Psycho-Oncology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Yang Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Lei Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Qing-Yang Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Yi He
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Psycho-Oncology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Fu-Chao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Xiao-Yu Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Li-Li Tang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Psycho-Oncology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Ying-Shi Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| |
Collapse
|
6
|
Nejati V, Mardanpour A, Zabihzaheh A, Estaji R, Vaziri ZS, Shahidi S. The role of prefrontal cortex and temporoparietal junction in interpersonal comfort and emotional approach. Sci Rep 2023; 13:21636. [PMID: 38062055 PMCID: PMC10703804 DOI: 10.1038/s41598-023-48099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Our perception of physical distance to individuals and stimuli is influenced by our mental distance and relatedness. The present study aimed to investigate the role of the dorsolateral prefrontal cortex (dlPFC), ventromedial prefrontal cortex (vmPFC), and right temporoparietal junction (rTPJ) in interpersonal comfortable distance and approach behaviors towards emotional stimuli. Twenty healthy volunteers received brain stimulation in four separate sessions with a one-week interval, including anodal left dlPFC, anodal right vmPFC, anodal rTPJ, and sham condition, with an extracranial return electrode. Our results revealed an increase in interpersonal distance during anodal rTPJ stimulation and a decrease in distance to positive pictures during anodal vmPFC stimulation. These findings suggest that the rTPJ plays a role in the perceptual component of self-other distancing, while the vmPFC is involved in approaching positive emotions.
Collapse
Affiliation(s)
- Vahid Nejati
- Department of Psychology, Shahid Beheshti University, Tehran, Iran.
| | - Aylin Mardanpour
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Zabihzaheh
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Reza Estaji
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Zahra S Vaziri
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Shahriar Shahidi
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Rajchert J, Zajenkowska A, Nowakowska I, Bodecka-Zych M, Abramiuk A. Hostility bias or sadness bias in excluded individuals: does anodal transcranial direct current stimulation of right VLPFC vs. left DLPFC have a mitigating effect? COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:1063-1077. [PMID: 35474567 DOI: 10.3758/s13415-022-01008-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Exclusion has multiple adverse effects on individual's well-being. It induces anger and hostile cognitions leading to aggressive behavior. The purpose of this study was to test whether exclusion would affect recognition of anger on ambivalent faces of the excluders. We hypothesized that exclusion would elicit more anger encoding (hostility bias) than inclusion, but this effect would be mitigated by anodal tDCS of right VLPFC or left DLPFC-regions engaged in negative affect regulation. Participants (N = 96) were recognizing emotions (anger, sadness, happiness) on ambiguous faces of individuals who-as they were told-liked them or not. Results showed that exclusion induced more sadness bias. tDCS to VLPFC decreased anger and increased sadness recognition on excluders' faces compared with includers' faces, expressing a mixture of these two emotions. Additionally, stimulation to VLPFC and DLPFC decreased latencies for faces expressing sadness (sad-angry and happy-sad) but increased for happy-angry faces. Stimulation to VLPFC also increased reaction time to excluders faces while stimulation of DLPFC decreased reaction latency to includers faces. Results were discussed with the reference to the form of exclusion, motivational mechanism affected by disliking but also to lateralization (valence vs. arousal theory) and cortical regions engaged in encoding sadness after a threat to belonging.
Collapse
|
8
|
Neuromodulation of facial emotion recognition in health and disease: A systematic review. Neurophysiol Clin 2022; 52:183-201. [DOI: 10.1016/j.neucli.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022] Open
|