1
|
Zinn PO, Habib A, Deng H, Gecici NN, Elidrissy H, Alami Idrissi Y, Amjadzadeh M, Sherry NS. Uncovering Interoceptive Human Insular Lobe Function through Intraoperative Cortical Stimulation-A Review. Brain Sci 2024; 14:646. [PMID: 39061387 PMCID: PMC11274540 DOI: 10.3390/brainsci14070646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The insular cortex, a critical hub in the brain's sensory, cognitive, and emotional networks, remains an intriguing subject of study. In this article, we discuss its intricate functional neuroanatomy, emphasizing its pivotal role in processing olfactory information. Through concise exploration, we delve into the insula's diverse connectivity and its involvement in sensory integration, particularly in olfaction. Stimulation studies in humans reveal compelling insights into the insula's contribution to the perception of smell, hinting at its broader implications for cognitive processing. Additionally, we explore an avenue of research in which studying olfactory processing via insular stimulation could unravel higher-level cognitive processes. This innovative approach could help give a fresh perspective on the interplay between sensory and cognitive domains, offering valuable insights into the neural mechanisms underlying cognition and emotion. In conclusion, future research efforts should emphasize a multidisciplinary approach, combining advanced imaging and surgical techniques to explore the intricate functions of the human insula. Moreover, awake craniotomies could offer a unique opportunity for real-time observation, shedding light on its neural circuitry and contributions to higher-order brain functions. Furthermore, olfaction's direct cortical projection enables precise exploration of insular function, promising insights into cognitive and emotional processes. This multifaceted approach will deepen our understanding of the insular cortex and its significance in human cognition and emotion.
Collapse
Affiliation(s)
- Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Hansen Deng
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
| | - Neslihan Nisa Gecici
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Hayat Elidrissy
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Yassine Alami Idrissi
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Mohammadreza Amjadzadeh
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Natalie Sandel Sherry
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- Department of Hematology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| |
Collapse
|
2
|
Hong Y, Ryun S, Chung CK. Evoking artificial speech perception through invasive brain stimulation for brain-computer interfaces: current challenges and future perspectives. Front Neurosci 2024; 18:1428256. [PMID: 38988764 PMCID: PMC11234843 DOI: 10.3389/fnins.2024.1428256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Encoding artificial perceptions through brain stimulation, especially that of higher cognitive functions such as speech perception, is one of the most formidable challenges in brain-computer interfaces (BCI). Brain stimulation has been used for functional mapping in clinical practices for the last 70 years to treat various disorders affecting the nervous system, including epilepsy, Parkinson's disease, essential tremors, and dystonia. Recently, direct electrical stimulation has been used to evoke various forms of perception in humans, ranging from sensorimotor, auditory, and visual to speech cognition. Successfully evoking and fine-tuning artificial perceptions could revolutionize communication for individuals with speech disorders and significantly enhance the capabilities of brain-computer interface technologies. However, despite the extensive literature on encoding various perceptions and the rising popularity of speech BCIs, inducing artificial speech perception is still largely unexplored, and its potential has yet to be determined. In this paper, we examine the various stimulation techniques used to evoke complex percepts and the target brain areas for the input of speech-like information. Finally, we discuss strategies to address the challenges of speech encoding and discuss the prospects of these approaches.
Collapse
Affiliation(s)
- Yirye Hong
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seokyun Ryun
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Chun Kee Chung
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
3
|
Wang Q, Luo L, Xu N, Wang J, Yang R, Chen G, Ren J, Luan G, Fang F. Neural response properties predict perceived contents and locations elicited by intracranial electrical stimulation of human auditory cortex. Cereb Cortex 2024; 34:bhad517. [PMID: 38185991 DOI: 10.1093/cercor/bhad517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024] Open
Abstract
Intracranial electrical stimulation (iES) of auditory cortex can elicit sound experiences with a variety of perceived contents (hallucination or illusion) and locations (contralateral or bilateral side), independent of actual acoustic inputs. However, the neural mechanisms underlying this elicitation heterogeneity remain undiscovered. Here, we collected subjective reports following iES at 3062 intracranial sites in 28 patients (both sexes) and identified 113 auditory cortical sites with iES-elicited sound experiences. We then decomposed the sound-induced intracranial electroencephalogram (iEEG) signals recorded from all 113 sites into time-frequency features. We found that the iES-elicited perceived contents can be predicted by the early high-γ features extracted from sound-induced iEEG. In contrast, the perceived locations elicited by stimulating hallucination sites and illusion sites are determined by the late high-γ and long-lasting α features, respectively. Our study unveils the crucial neural signatures of iES-elicited sound experiences in human and presents a new strategy to hearing restoration for individuals suffering from deafness.
Collapse
Affiliation(s)
- Qian Wang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- National Key Laboratory of General Artificial Intelligence, Peking University, Beijing 100871, China
| | - Lu Luo
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Na Xu
- Division of Brain Sciences, Changping Laboratory, Beijing 102206, China
| | - Jing Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Ruolin Yang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Guanpeng Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Ren
- Department of Functional Neurosurgery, Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Epilepsy Center, Kunming Sanbo Brain Hospital, Kunming 650100 China
| | - Guoming Luan
- Department of Functional Neurosurgery, Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Yang J, Shen L, Long Q, Li W, Zhang W, Chen Q, Han B. Electrical stimulation induced self-related auditory hallucinations correlate with oscillatory power change in the default mode network. Cereb Cortex 2024; 34:bhad473. [PMID: 38061695 DOI: 10.1093/cercor/bhad473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 01/19/2024] Open
Abstract
Self-related information is crucial in our daily lives, which has led to the proposal that there is a specific brain mechanism for processing it. Neuroimaging studies have consistently demonstrated that the default mode network (DMN) is strongly associated with the representation and processing of self-related information. However, the precise relationship between DMN activity and self-related information, particularly in terms of neural oscillations, remains largely unknown. We electrically stimulated the superior temporal and fusiform areas, using stereo-electroencephalography to investigate neural oscillations associated with elicited self-related auditory hallucinations. Twenty-two instances of auditory hallucinations were recorded and categorized into self-related and other-related conditions. Comparing oscillatory power changes within the DMN between self-related and other-related auditory hallucinations, we discovered that self-related hallucinations are associated with significantly stronger positive power changes in both alpha and gamma bands compared to other-related hallucinations. To ensure the validity of our findings, we conducted controlled analyses for factors of familiarity and clarity, which revealed that the observed effects within the DMN remain independent of these factors. These results underscore the significance of the functional role of the DMN during the processing of self-related auditory hallucinations and shed light on the relationship between self-related perception and neural oscillatory activity.
Collapse
Affiliation(s)
- Jing Yang
- Center for Studies of Psychological Application, South China Normal University, No.55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| | - Lu Shen
- Center for Studies of Psychological Application, South China Normal University, No.55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| | - Qiting Long
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| | - Wenjie Li
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| | - Wei Zhang
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Litang Road No. 168, Changping District, 102218, Beijing, China
- Epilepsy Center, Shanghai Neuromedical Center, Gulang Road No. 378, Putuo District, 200331, Shanghai, China
| | - Qi Chen
- Center for Studies of Psychological Application, South China Normal University, No.55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| | - Biao Han
- Center for Studies of Psychological Application, South China Normal University, No.55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| |
Collapse
|
5
|
Cossette-Roberge H, Li J, Citherlet D, Nguyen DK. Localizing and lateralizing value of auditory phenomena in seizures. Epilepsy Behav 2023; 145:109327. [PMID: 37422934 DOI: 10.1016/j.yebeh.2023.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Auditory seizures (AS) are a rare type of focal seizures. AS are classically thought to involve a seizure onset zone (SOZ) in the temporal lobe, but there remain uncertainties about their localizing and lateralizing value. We conducted a narrative literature review with the aim of providing an up-to-date description of the lateralizing and localizing value of AS. METHODS The databases PubMed, Scopus, and Google Scholar were searched for literature on AS in December 2022. All cortical stimulation studies, case reports, and case series were analyzed to assess for auditory phenomena that were suggestive of AS and to evaluate if the lateralization and/or localization of the SOZ could be determined. We classified AS according to their semiology (e.g., simple hallucination versus complex hallucination) and the level of evidence with which the SOZ could be predicted. RESULTS A total of 174 cases comprising 200 AS were analyzed from 70 articles. Across all studies, the SOZ of AS were more often in the left (62%) than in the right (38%) hemisphere. AS heard bilaterally followed this trend. Unilaterally heard AS were more often due to a SOZ in the contralateral hemisphere (74%), although they could also be ipsilateral (26%). The SOZ for AS was not limited to the auditory cortex, nor to the temporal lobe. The areas more frequently involved in the temporal lobe were the superior temporal gyrus (STG) and mesiotemporal structures. Extratemporal locations included parietal, frontal, insular, and rarely occipital structures. CONCLUSION Our review highlighted the complexity of AS and their importance in the identification of the SOZ. Due to the limited data and heterogeneous presentation of AS in the literature, the patterns associated with different AS semiologies warrant further research.
Collapse
Affiliation(s)
- Hélène Cossette-Roberge
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Neurology Division, Centre Hospitalier de l'Université de Sherbrooke (CHUS), Sherbrooke, QC, Canada.
| | - Jimmy Li
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Neurology Division, Centre Hospitalier de l'Université de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Daphné Citherlet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Dang Khoa Nguyen
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Department of Neurosciences, Université de Montréal, Montreal, QC, Canada; Neurology Division, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| |
Collapse
|
6
|
Frauscher B, Bénar CG, Engel JJ, Grova C, Jacobs J, Kahane P, Wiebe S, Zjilmans M, Dubeau F. Neurophysiology, Neuropsychology, and Epilepsy, in 2022: Hills We Have Climbed and Hills Ahead. Neurophysiology in epilepsy. Epilepsy Behav 2023; 143:109221. [PMID: 37119580 DOI: 10.1016/j.yebeh.2023.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/01/2023]
Abstract
Since the discovery of the human electroencephalogram (EEG), neurophysiology techniques have become indispensable tools in our armamentarium to localize epileptic seizures. New signal analysis techniques and the prospects of artificial intelligence and big data will offer unprecedented opportunities to further advance the field in the near future, ultimately resulting in improved quality of life for many patients with drug-resistant epilepsy. This article summarizes selected presentations from Day 1 of the two-day symposium "Neurophysiology, Neuropsychology, Epilepsy, 2022: Hills We Have Climbed and the Hills Ahead". Day 1 was dedicated to highlighting and honoring the work of Dr. Jean Gotman, a pioneer in EEG, intracranial EEG, simultaneous EEG/ functional magnetic resonance imaging, and signal analysis of epilepsy. The program focused on two main research directions of Dr. Gotman, and was dedicated to "High-frequency oscillations, a new biomarker of epilepsy" and "Probing the epileptic focus from inside and outside". All talks were presented by colleagues and former trainees of Dr. Gotman. The extended summaries provide an overview of historical and current work in the neurophysiology of epilepsy with emphasis on novel EEG biomarkers of epilepsy and source imaging and concluded with an outlook on the future of epilepsy research, and what is needed to bring the field to the next level.
Collapse
Affiliation(s)
- B Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| | - C G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - J Jr Engel
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - C Grova
- Multimodal Functional Imaging Lab, PERFORM Centre, Department of Physics, Concordia University, Montreal, QC, Canada; Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, QC, Canada; Montreal Neurological Institute and Hospital, Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
| | - J Jacobs
- Department of Pediatric and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - P Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, Department of Neurology, 38000 Grenoble, France
| | - S Wiebe
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - M Zjilmans
- Stichting Epilepsie Instellingen Nederland, The Netherlands; Brain Center, University Medical Center Utrecht, The Netherlands
| | - F Dubeau
- Montreal Neurological Institute and Hospital, Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
| |
Collapse
|