1
|
Errico J. Metabolic syndrome: Understanding its root cause, and the role of macrophages and why vagus nerve stimulation may be an effective treatment. VAGUS NERVE STIMULATION 2025:313-325. [DOI: 10.1016/b978-0-12-816996-4.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Marano M, Magee R, Blasi F, Anzini G, Capone F, Ricciuti R, Ottaviani MM, Di Lazzaro V. An open-label pilot study of non-invasive cervical vagus nerve stimulation in essential tremor. Brain Stimul 2024; 17:1283-1285. [PMID: 39566596 DOI: 10.1016/j.brs.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/29/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024] Open
Affiliation(s)
- Massimo Marano
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Viale Alvaro del Portillo 200, 00128, Rome, Italy.
| | - Rogan Magee
- Departments of Neurology, Hospital of the University of Pennsylvania, Philadelphia, United States
| | - Francesca Blasi
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Italy
| | - Gaia Anzini
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Viale Alvaro del Portillo 200, 00128, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Viale Alvaro del Portillo 200, 00128, Rome, Italy
| | - Riccardo Ricciuti
- Department of Neurosurgery, Università Politecnica delle Marche, Ancona, Italy
| | | | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Viale Alvaro del Portillo 200, 00128, Rome, Italy
| |
Collapse
|
3
|
Evancho A, Do M, Fortenberry D, Billings R, Sartayev A, Tyler WJ. Vagus nerve stimulation in Parkinson's disease: a scoping review of animal studies and human subjects research. NPJ Parkinsons Dis 2024; 10:199. [PMID: 39448636 PMCID: PMC11502766 DOI: 10.1038/s41531-024-00803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Parkinson's Disease (PD) is a prevalent, progressive neurodegenerative disease with motor and non-motor symptoms. Vagus Nerve Stimulation (VNS) has emerged as a potential therapeutic approach for PD, but published research on this topic varies widely. This scoping review maps existing literature on VNS for PD, highlighting stimulation methods, operational parameters, safety profiles, neurophysiological mechanisms, and clinical outcomes in human and animal models. Online databases were used to identify 788 papers published between 2013 and 2023, from which 17 publications on invasive and non-invasive VNS in PD were selected. Studies showed high variability in VNS parameters and study design. Evidence in animal models and human subjects suggests potential neurophysiological effects on PD-related pathology and motor function improvements. However, significant gaps in the literature remain. Future research should include rigorous reporting of study design, standardization of stimulation parameters, and larger sample sizes to ultimately facilitate translation of VNS into clinical practice.
Collapse
Affiliation(s)
- Alexandra Evancho
- University of Alabama at Birmingham School of Health Professions, Birmingham, AL, USA.
| | - Melissa Do
- University of Alabama at Birmingham School of Engineering, Birmingham, AL, USA
| | | | - Rebecca Billings
- University of Alabama at Birmingham Libraries, Birmingham, AL, USA
| | - Alibek Sartayev
- University of Alabama at Birmingham Graduate Biomedical Sciences, Birmingham, AL, USA
| | - William J Tyler
- University of Alabama at Birmingham School of Health Professions, Birmingham, AL, USA
- University of Alabama at Birmingham School of Engineering, Birmingham, AL, USA
- University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| |
Collapse
|
4
|
Marano M, Di Lazzaro V. Pursuing ear-wise stimulations for Parkinson's Disease: Pathways and parameters matters. Parkinsonism Relat Disord 2024; 126:106083. [PMID: 38458833 DOI: 10.1016/j.parkreldis.2024.106083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Affiliation(s)
- Massimo Marano
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico of Rome, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy.
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico of Rome, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
5
|
Bhardwaj K, Singh AA, Kumar H. Unveiling the Journey from the Gut to the Brain: Decoding Neurodegeneration-Gut Connection in Parkinson's Disease. ACS Chem Neurosci 2024; 15:2454-2469. [PMID: 38896463 DOI: 10.1021/acschemneuro.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Parkinson's disease, a classical motor disorder affecting the dopaminergic system of the brain, has been as a disease of the brain, but this classical notion has now been viewed differently as the pathology begins in the gut and then gradually moves up to the brain regions. The microorganisms in the gut play a critical role in maintaining the physiology of the gut from maintaining barrier integrity to secretion of microbial products that maintain a healthy gut state. The pathology subsequently alters the normal composition of gut microbes and causes deleterious effects that ultimately trigger strong neuroinflammation and nonmotor symptoms along with characteristic synucleopathy, a pathological hallmark of the disease. Understanding the complex pathomechanisms in distinct and established preclinical models is the primary goal of researchers to decipher how exactly gut pathology has a central effect; the quest has led to many answered and some open-ended questions for researchers. We summarize the popular opinions and some contrasting views, concise footsteps in the treatment strategies targeting the gastrointestinal system.
Collapse
Affiliation(s)
- Kritika Bhardwaj
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Opposite Air force station, Palaj, Gandhinagar, 382355 Gujarat, India
| | - Aditya A Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Opposite Air force station, Palaj, Gandhinagar, 382355 Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Opposite Air force station, Palaj, Gandhinagar, 382355 Gujarat, India
| |
Collapse
|
6
|
Ekwudo MN, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease: pathogenic mechanisms and therapeutic targets. FEBS J 2024. [PMID: 38426291 DOI: 10.1111/febs.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Huntington's disease (HD) is a currently incurable neurogenerative disorder and is typically characterized by progressive movement disorder (including chorea), cognitive deficits (culminating in dementia), psychiatric abnormalities (the most common of which is depression), and peripheral symptoms (including gastrointestinal dysfunction). There are currently no approved disease-modifying therapies available for HD, with death usually occurring approximately 10-25 years after onset, but some therapies hold promising potential. HD subjects are often burdened by chronic diarrhea, constipation, esophageal and gastric inflammation, and a susceptibility to diabetes. Our understanding of the microbiota-gut-brain axis in HD is in its infancy and growing evidence from preclinical and clinical studies suggests a role of gut microbial population imbalance (gut dysbiosis) in HD pathophysiology. The gut and the brain can communicate through the enteric nervous system, immune system, vagus nerve, and microbiota-derived-metabolites including short-chain fatty acids, bile acids, and branched-chain amino acids. This review summarizes supporting evidence demonstrating the alterations in bacterial and fungal composition that may be associated with HD. We focus on mechanisms through which gut dysbiosis may compromise brain and gut health, thus triggering neuroinflammatory responses, and further highlight outcomes of attempts to modulate the gut microbiota as promising therapeutic strategies for HD. Ultimately, we discuss the dearth of data and the need for more longitudinal and translational studies in this nascent field. We suggest future directions to improve our understanding of the association between gut microbes and the pathogenesis of HD, and other 'brain and body disorders'.
Collapse
Affiliation(s)
- Millicent N Ekwudo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| |
Collapse
|
7
|
Ma YY, Li X, Yu JT, Wang YJ. Therapeutics for neurodegenerative diseases by targeting the gut microbiome: from bench to bedside. Transl Neurodegener 2024; 13:12. [PMID: 38414054 PMCID: PMC10898075 DOI: 10.1186/s40035-024-00404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
The aetiologies and origins of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), are complex and multifaceted. A growing body of evidence suggests that the gut microbiome plays crucial roles in the development and progression of neurodegenerative diseases. Clinicians have come to realize that therapeutics targeting the gut microbiome have the potential to halt the progression of neurodegenerative diseases. This narrative review examines the alterations in the gut microbiome in AD, PD, ALS and HD, highlighting the close relationship between the gut microbiome and the brain in neurodegenerative diseases. Processes that mediate the gut microbiome-brain communication in neurodegenerative diseases, including the immunological, vagus nerve and circulatory pathways, are evaluated. Furthermore, we summarize potential therapeutics for neurodegenerative diseases that modify the gut microbiome and its metabolites, including diets, probiotics and prebiotics, microbial metabolites, antibacterials and faecal microbiome transplantation. Finally, current challenges and future directions are discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Ma
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
| | - Xin Li
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University, Shigatse, 857000, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China.
| |
Collapse
|
8
|
Marano M, Anzini G, Saltarocchi L, Ricciuti R, Capone F, Tan H, Torrecillos F, Lanzone J, Lazzaro VD. Left Vagus Stimulation Modulates Contralateral Subthalamic β Power Improving the Gait in Parkinson's Disease. Mov Disord 2024; 39:424-428. [PMID: 38111224 PMCID: PMC7615838 DOI: 10.1002/mds.29690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Transcutaneous vagus nerve stimulation (VNS) showed early evidence of efficacy for the gait treatment of Parkinson's disease (PD). OBJECTIVES Providing data on neurophysiological and clinical effects of transauricular VNS (taVNS). METHODS Ten patients with recording deep brain stimulation (DBS) have been enrolled in a within participant design pilot study, double-blind crossover sham-controlled trial of taVNS. Subthalamic local field potentials (β band power), Unified Parkinson's Disease Rating Scales (UPDRS), and a digital timed-up-and-go test (TUG) were measured and compared with real versus sham taVNS during medication-off/DBS-OFF condition. RESULTS The left taVNS induced a reduction of the total β power in the contralateral (ie, right) subthalamic nucleus and an improvement of TUG time, speed, and variability. The taVNS-induced β reduction correlated with the improvement of gait speed. No major clinical changes were observed at UPDRS. CONCLUSIONS taVNS is a promising strategy for the management of PD gait, deserving prospective trials of chronic neuromodulation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Massimo Marano
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Gaia Anzini
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Luca Saltarocchi
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Riccardo Ricciuti
- Neurosurgery Unit, Ospedale Belcolle, ASL di Viterbo, Viterbo, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Flavie Torrecillos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jacopo Lanzone
- Department of the Neurorehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Milano Institute, Milan, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| |
Collapse
|
9
|
Bonaz B. The gut-brain axis in Parkinson's disease. Rev Neurol (Paris) 2024; 180:65-78. [PMID: 38129277 DOI: 10.1016/j.neurol.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
There is a bi-directional communication between the gut, including the microbiota, and the brain through the autonomic nervous system. Accumulating evidence has suggested a bidirectional link between gastrointestinal inflammation and neurodegeneration, in accordance with the concept of the gut-rain axis. An abnormal microbiota-gut-brain interaction contributes to the pathogeny of Parkinson's disease. This supports the hypothesis that Parkinson's disease originates in the gut to spread to the central nervous system, in particular through the vagus nerve. Targeting the gut-to-brain axis with vagus nerve stimulation, fecal microbiota transplantation, gut-selective antibiotics, as well as drugs targeting the leaky gut might be of interest in the management of Parkinson's disease.
Collapse
Affiliation(s)
- B Bonaz
- Service d'hépato-gastroentérologie, Grenoble institut neurosciences, université Grenoble-Alpes, Grenoble, France.
| |
Collapse
|
10
|
Lench DH, Turner TH, McLeod C, Boger HA, Lovera L, Heidelberg L, Elm J, Phan A, Badran BW, Hinson VK. Multi-session transcutaneous auricular vagus nerve stimulation for Parkinson's disease: evaluating feasibility, safety, and preliminary efficacy. Front Neurol 2023; 14:1210103. [PMID: 37554394 PMCID: PMC10406445 DOI: 10.3389/fneur.2023.1210103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Background In pre-clinical animal models of Parkinson's disease (PD), vagus nerve stimulation (VNS) can rescue motor deficits and protect susceptible neuronal populations. Transcutaneous auricular vagus nerve stimulation (taVNS) has emerged as a non-invasive alternative to traditional invasive cervical VNS. This is the first report summarizing the safety, feasibility, and preliminary efficacy of repeated sessions of taVNS in participants with PD. Objectives To evaluate the feasibility, safety, and possible efficacy of taVNS for motor and non-motor symptoms in mild to moderate PD. Methods This is a double-blind, sham controlled RCT (NCT04157621) of taVNS in 30 subjects with mild to moderate PD without cognitive impairment. Participants received 10, 1-h taVNS sessions (25 Hz, 200% of sensory threshold, 500 μs pulse width, 60 s on and 30 s off) over a 2-week period. Primary outcome measures were feasibility and safety of the intervention; secondary outcomes included the MDS-UPDRS, cognitive function and self-reported symptom improvement. Results taVNS treatment was feasible, however, daily in-office visits were reported as being burdensome for participants. While five participants in the taVNS group and three in the sham group self-reported one or more minor adverse events, no major adverse events occurred. There were no group differences on blood pressure and heart rate throughout the intervention. There were no group differences in MDS-UPDRS scores or self-reported measures. Although global cognitive scores remained stable across groups, there was a reduction in verbal fluency within the taVNS group. Conclusions taVNS was safe, and well-tolerated in PD participants. Future studies of taVNS for PD should explore at-home stimulation devices and optimize stimulation parameters to reduce variability and maximize engagement of neural targets.
Collapse
Affiliation(s)
- Daniel H. Lench
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Travis H. Turner
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Colin McLeod
- Department of Neurology, Augusta University Medical Center, Augusta, GA, United States
| | - Heather A. Boger
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
| | - Lilia Lovera
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Lisa Heidelberg
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Jordan Elm
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Anh Phan
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Bashar W. Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Vanessa K. Hinson
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|